1. Academic Validation
  2. Anti-invasive adjuvant therapy with imipramine blue enhances chemotherapeutic efficacy against glioma

Anti-invasive adjuvant therapy with imipramine blue enhances chemotherapeutic efficacy against glioma

  • Sci Transl Med. 2012 Mar 28;4(127):127ra36. doi: 10.1126/scitranslmed.3003016.
Jennifer M Munson 1 Levi Fried Sydney A Rowson Michael Y Bonner Lohitash Karumbaiah Begoña Diaz Sara A Courtneidge Ulla G Knaus Daniel J Brat Jack L Arbiser Ravi V Bellamkonda
Affiliations

Affiliation

  • 1 Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
Abstract

The invasive nature of glioblastoma (GBM) represents a major clinical challenge contributing to poor outcomes. Invasion of GBM into healthy tissue restricts chemotherapeutic access and complicates surgical resection. Here, we test the hypothesis that an effective anti-invasive agent can "contain" GBM and increase the efficacy of chemotherapy. We report a new anti-invasive small molecule, Imipramine Blue (IB), which inhibits invasion of glioma in vitro when tested against several models. IB inhibits NADPH (reduced form of nicotinamide adenine dinucleotide phosphate) oxidase-mediated Reactive Oxygen Species generation and alters expression of actin regulatory elements. In vivo, liposomal IB (nano-IB) halts invasion of glioma, leading to a more compact tumor in an aggressively invasive RT2 syngeneic astrocytoma rodent model. When nano-IB therapy was followed by liposomal doxorubicin (nano-DXR) chemotherapy, the combination therapy prolonged survival compared to nano-IB or nano-DXR alone. Our data demonstrate that nano-IB-mediated containment of diffuse glioma enhanced the efficacy of nano-DXR chemotherapy, demonstrating the promise of an anti-invasive compound as an Adjuvant treatment for glioma.

Figures
Products