1. Academic Validation
  2. The MYC-associated protein CDCA7 is phosphorylated by AKT to regulate MYC-dependent apoptosis and transformation

The MYC-associated protein CDCA7 is phosphorylated by AKT to regulate MYC-dependent apoptosis and transformation

  • Mol Cell Biol. 2013 Feb;33(3):498-513. doi: 10.1128/MCB.00276-12.
R Montgomery Gill 1 Timothy V Gabor Amber L Couzens Michael P Scheid
Affiliations

Affiliation

  • 1 Department of Biology, York University, Toronto, Ontario, Canada.
Abstract

Cell division control protein A7 (CDCA7) is a recently identified target of MYC-dependent transcriptional regulation. We have discovered that CDCA7 associates with MYC and that this association is modulated in a phosphorylation-dependent manner. The prosurvival kinase Akt phosphorylates CDCA7 at threonine 163, promoting binding to 14-3-3, dissociation from MYC, and sequestration to the cytoplasm. Upon serum withdrawal, induction of CDCA7 expression in the presence of MYC sensitized cells to Apoptosis, whereas CDCA7 knockdown reduced MYC-dependent Apoptosis. The transformation of fibroblasts by MYC was reduced by coexpression of CDCA7, while the non-MYC-interacting protein Δ(156-187)-CDCA7 largely inhibited MYC-induced transformation. These studies provide insight into a new mechanism by which Akt signaling to CDCA7 could alter MYC-dependent growth and transformation, contributing to tumorigenesis.

Figures