1. Academic Validation
  2. Galiellalactone is a direct inhibitor of the transcription factor STAT3 in prostate cancer cells

Galiellalactone is a direct inhibitor of the transcription factor STAT3 in prostate cancer cells

  • J Biol Chem. 2014 Jun 6;289(23):15969-78. doi: 10.1074/jbc.M114.564252.
Nicholas Don-Doncow 1 Zilma Escobar 2 Martin Johansson 1 Sven Kjellström 3 Victor Garcia 4 Eduardo Munoz 4 Olov Sterner 2 Anders Bjartell 1 Rebecka Hellsten 5
Affiliations

Affiliations

  • 1 From the Division of Urological Cancers, Lund University, SE-205 02 Malmö, Sweden.
  • 2 the Division of Organic Chemistry, Lund University, SE-221 00 Lund, Sweden.
  • 3 the Department of Biochemistry and Structural Biology, Lund University, SE-221 00 Lund, Sweden, and.
  • 4 the Maimonides Institute for Research in Biomedicine of Cordoba, Reina Sofia University Hospital, University of Córdoba, 14004 Córdoba, Spain.
  • 5 From the Division of Urological Cancers, Lund University, SE-205 02 Malmö, Sweden, rebecka.hellsten@med.lu.se.
Abstract

The transcription factor STAT3 is constitutively active in several malignancies including castration-resistant prostate Cancer and has been identified as a promising therapeutic target. The Fungal metabolite galiellalactone, a STAT3 signaling inhibitor, inhibits the growth, both in vitro and in vivo, of prostate Cancer cells expressing active STAT3 and induces Apoptosis of prostate Cancer stem cell-like cells expressing phosphorylated STAT3 (pSTAT3). However, the molecular mechanism of this STAT3-inhibiting effect by galiellalactone has not been clarified. A biotinylated analogue of galiellalactone (GL-biot) was synthesized to be used for identification of galiellalactone target proteins. By adding streptavidin-Sepharose beads to GL-biot-treated DU145 cell lysates, STAT3 was isolated and identified as a target protein. Confocal microscopy revealed GL-biot in both the cytoplasm and the nucleus of DU145 cells treated with GL-biot, appearing to co-localize with STAT3 in the nucleus. Galiellalactone inhibited STAT3 binding to DNA in DU145 cell lysates without affecting phosphorylation status of STAT3. Mass spectrometry analysis of recombinant STAT3 protein pretreated with galiellalactone revealed three modified cysteines (Cys-367, Cys-468, and Cys-542). Here we demonstrate with chemical and molecular pharmacological methods that galiellalactone is a cysteine reactive inhibitor that covalently binds to one or more cysteines in STAT3 and that this leads to inhibition of STAT3 binding to DNA and thus blocks STAT3 signaling without affecting phosphorylation. This further validates galiellalactone as a promising direct STAT3 Inhibitor for treatment of castration-resistant prostate Cancer.

Keywords

Anticancer Drug; Cancer Therapy; Prostate Cancer; STAT3; Small Molecule.

Figures
Products