1. Academic Validation
  2. Functionally selective dopamine D₂, D₃ receptor partial agonists

Functionally selective dopamine D₂, D₃ receptor partial agonists

  • J Med Chem. 2014 Jun 12;57(11):4861-75. doi: 10.1021/jm5004039.
Dorothee Möller 1 Ralf C Kling Marika Skultety Kristina Leuner Harald Hübner Peter Gmeiner
Affiliations

Affiliation

  • 1 Department of Chemistry and Pharmacy, Medicinal Chemistry, and ‡Department of Chemistry and Pharmacy, Molecular and Clinical Pharmacy, Emil Fischer Center, Friedrich Alexander University , Schuhstrasse 19, 91052 Erlangen, Germany.
Abstract

Dopamine D2 receptor-promoted activation of Gα(o) over Gα(i) may increase synaptic plasticity and thereby might improve negative symptoms of schizophrenia. Heterocyclic dopamine surrogates comprising a pyrazolo[1,5-a]pyridine moiety were synthesized and investigated for their binding properties when low- to subnanomolar K(i) values were determined for D(2L), D(2S), and D3 receptors. Measurement of [(35)S]GTPγS incorporation at D(2S) coexpressed with G-protein subunits indicated significant bias for promotion of Gα(o1) over Gα(i2) coupling for several test compounds. Functionally selective D(2S) activation was most striking for the carbaldoxime 8b (Gα(o1), pEC50 = 8.87, E(max) = 65%; Gα(i2), pEC50 = 6.63, E(max) = 27%). In contrast, the investigated 1,4-disubstituted aromatic piperazines (1,4-DAPs) behaved as antagonists for β-arrestin-2 recruitment, implying significant ligand bias for G-protein activation over β-arrestin-2 recruitment at D(2S) receptors. Ligand efficacy and selectivity between D(2S) and D3 activation were strongly influenced by regiochemistry and the nature of functional groups attached to the pyrazolo[1,5-a]pyridine moiety.

Figures