1. Academic Validation
  2. Design, synthesis, and biological evaluation of 3-(1-Aryl-1H-indol-5-yl)propanoic acids as new indole-based cytosolic phospholipase A2α inhibitors

Design, synthesis, and biological evaluation of 3-(1-Aryl-1H-indol-5-yl)propanoic acids as new indole-based cytosolic phospholipase A2α inhibitors

  • J Med Chem. 2014 Sep 11;57(17):7244-62. doi: 10.1021/jm500494y.
Toshiyuki Tomoo 1 Takashi Nakatsuka Toyoko Katayama Yasuhiro Hayashi Yusuke Fujieda Maki Terakawa Kazuhiro Nagahira
Affiliations

Affiliation

  • 1 Faculty of Pharmaceutical Chemistry, ‡R&D Administration, §Exploratory Technology, ∥Drug Discovery Technology, and ⊥Pharmacology I, Asubio Pharma Co., Ltd. , 6-4-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
Abstract

This article describes the design, synthesis, and biological evaluation of new indole-based cytosolic Phospholipase A2α (cPLA2α, a group IVA Phospholipase A2) inhibitors. A screening-hit compound from our library, (E)-3-{4-[(4-chlorophenyl)thio]-3-nitrophenyl}acrylic acid (5), was used to design a class of 3-(1-aryl-1H-indol-5-yl)propanoic acids as new small molecule inhibitors. The resultant structure-activity relationships studied using the isolated Enzyme and by cell-based assays revealed that the 1-(p-O-substituted)phenyl, 3-phenylethyl, and 5-propanoic acid groups on the indole core are essential for good inhibitory activity against cPLA2α. Optimization of the p-substituents on the N1 phenyl group led to the discovery of 56n (ASB14780), which was shown to be a potent inhibitor of cPLA2α via Enzyme assay, cell-based assay, and guinea pig and human whole-blood assays. It displayed oral efficacy toward mice tetradecanoyl phorbol acetate-induced ear edema and guinea pig ovalbumin-induced asthma models.

Figures
Products