1. Academic Validation
  2. Pharmacology of a novel central nervous system-penetrant P2X7 antagonist JNJ-42253432

Pharmacology of a novel central nervous system-penetrant P2X7 antagonist JNJ-42253432

  • J Pharmacol Exp Ther. 2014 Dec;351(3):628-41. doi: 10.1124/jpet.114.218487.
Brian Lord 1 Leah Aluisio 1 James R Shoblock 1 Robert A Neff 1 Elena I Varlinskaya 1 Marc Ceusters 1 Timothy W Lovenberg 1 Nicholas Carruthers 1 Pascal Bonaventure 1 Michael A Letavic 1 Terrence Deak 1 Wilhelmus Drinkenburg 1 Anindya Bhattacharya 2
Affiliations

Affiliations

  • 1 Neuroscience Therapeutic Area, Janssen Research & Development, LLC, San Diego, California (B.L., L.A., J.R.S., R.A.N., T.W.L., N.C., P.B., M.A.L., A.B.); Neuroscience Therapeutic Area, Janssen Research & Development, Division of Janssen Pharmaceutica NV, Beerse, Belgium (M.C., W.D.); and Behavioral Neuroscience Program, Department of Psychology, Binghamton University-State University of New York, Binghamton, New York (E.I.V., T.D.).
  • 2 Neuroscience Therapeutic Area, Janssen Research & Development, LLC, San Diego, California (B.L., L.A., J.R.S., R.A.N., T.W.L., N.C., P.B., M.A.L., A.B.); Neuroscience Therapeutic Area, Janssen Research & Development, Division of Janssen Pharmaceutica NV, Beerse, Belgium (M.C., W.D.); and Behavioral Neuroscience Program, Department of Psychology, Binghamton University-State University of New York, Binghamton, New York (E.I.V., T.D.) abhatta2@its.jnj.com.
Abstract

In the central nervous system, the ATP-gated Purinergic receptor P2X ligand-gated ion channel 7 (P2X7) is expressed in glial cells and modulates neurophysiology via release of gliotransmitters, including the proinflammatory cytokine interleukin (IL)-1β. In this study, we characterized JNJ-42253432 [2-methyl-N-([1-(4-phenylpiperazin-1-yl)cyclohexyl]methyl)-1,2,3,4-tetrahydroisoquinoline-5-carboxamide] as a centrally permeable (brain-to-plasma ratio of 1), high-affinity P2X7 antagonist with desirable pharmacokinetic and pharmacodynamic properties for in vivo testing in rodents. JNJ-42253432 is a high-affinity antagonist for the rat (pKi 9.1 ± 0.07) and human (pKi 7.9 ± 0.08) P2X7 channel. The compound blocked the ATP-induced current and Bz-ATP [2'(3')-O-(4-benzoylbenzoyl)adenosine-5'-triphosphate tri(triethylammonium)]-induced release of IL-1β in a concentration-dependent manner. When dosed in rats, JNJ-42253432 occupied the brain P2X7 channel with an ED50 of 0.3 mg/kg, corresponding to a mean plasma concentration of 42 ng/ml. The compound blocked the release of IL-1β induced by Bz-ATP in freely moving rat brain. At higher doses/exposure, JNJ-42253432 also increased serotonin levels in the rat brain, which is due to antagonism of the Serotonin Transporter (SERT) resulting in an ED50 of 10 mg/kg for SERT occupancy. JNJ-42253432 reduced electroencephalography spectral power in the α-1 band in a dose-dependent manner; the compound also attenuated amphetamine-induced hyperactivity. JNJ-42253432 significantly increased both overall social interaction and social preference, an effect that was independent of stress induced by foot-shock. Surprisingly, there was no effect of the compound on either neuropathic pain or inflammatory pain behaviors. In summary, in this study, we characterize JNJ-42253432 as a novel brain-penetrant P2X7 antagonist with high affinity and selectivity for the P2X7 channel.

Figures
Products