1. Academic Validation
  2. Negamycin induces translational stalling and miscoding by binding to the small subunit head domain of the Escherichia coli ribosome

Negamycin induces translational stalling and miscoding by binding to the small subunit head domain of the Escherichia coli ribosome

  • Proc Natl Acad Sci U S A. 2014 Nov 18;111(46):16274-9. doi: 10.1073/pnas.1414401111.
Nelson B Olivier 1 Roger B Altman 2 Jonas Noeske 3 Gregory S Basarab 4 Erin Code 1 Andrew D Ferguson 1 Ning Gao 1 Jian Huang 1 Manuel F Juette 2 Stephania Livchak 1 Matthew D Miller 4 D Bryan Prince 1 Jamie H D Cate 3 Ed T Buurman 5 Scott C Blanchard 6
Affiliations

Affiliations

  • 1 Discovery Sciences, AstraZeneca R&D Boston, Waltham, MA 02451;
  • 2 Department of Physiology and Biophysics & the Tri-Institutional PhD Program in Chemical Biology, Weill Cornell Medical College, New York, NY 10065;
  • 3 Department of Molecular Cell Biology, California Institute of Quantitative Biosciences, University of California, Berkeley, CA 94720; and.
  • 4 Departments of Chemistry and.
  • 5 Biosciences, Infection Innovative Medicines Unit, AstraZeneca R&D Boston, Waltham, MA 02451 scb2005@med.cornell.edu Ed.Buurman@astrazeneca.com.
  • 6 Department of Physiology and Biophysics & the Tri-Institutional PhD Program in Chemical Biology, Weill Cornell Medical College, New York, NY 10065; scb2005@med.cornell.edu Ed.Buurman@astrazeneca.com.
Abstract

Negamycin is a natural product with broad-spectrum Antibacterial activity and efficacy in animal models of Infection. Although its precise mechanism of action has yet to be delineated, negamycin inhibits cellular protein synthesis and causes cell death. Here, we show that single point mutations within 16S rRNA that confer resistance to negamycin are in close proximity of the Tetracycline binding site within helix 34 of the small subunit head domain. As expected from its direct interaction with this region of the ribosome, negamycin was shown to displace Tetracycline. However, in contrast to tetracycline-class Antibiotics, which serve to prevent cognate tRNA from entering the translating ribosome, single-molecule fluorescence resonance energy transfer investigations revealed that negamycin specifically stabilizes near-cognate ternary complexes within the A site during the normally transient initial selection process to promote miscoding. The crystal structure of the 70S ribosome in complex with negamycin, determined at 3.1 Å resolution, sheds light on this finding by showing that negamycin occupies a site that partially overlaps that of tetracycline-class Antibiotics. Collectively, these data suggest that the small subunit head domain contributes to the decoding mechanism and that small-molecule binding to this domain may either prevent or promote tRNA entry by altering the initial selection mechanism after codon recognition and before GTPase activation.

Keywords

antibiotic; fidelity; negamycin; ribosome; translation.

Figures
Products