1. Academic Validation
  2. Rational design of small molecule inhibitors targeting the Ras GEF, SOS1

Rational design of small molecule inhibitors targeting the Ras GEF, SOS1

  • Chem Biol. 2014 Dec 18;21(12):1618-28. doi: 10.1016/j.chembiol.2014.09.018.
Chris R Evelyn 1 Xin Duan 1 Jacek Biesiada 2 William L Seibel 3 Jaroslaw Meller 4 Yi Zheng 5
Affiliations

Affiliations

  • 1 Division of Experimental Hematology and Cancer Biology, Children's Hospital Research Foundation, Cincinnati, OH 45229, USA.
  • 2 Division of Biomedical Informatics, Children's Hospital Research Foundation, Cincinnati, OH 45229, USA.
  • 3 Division of Oncology, Children's Hospital Research Foundation, Cincinnati, OH 45229, USA.
  • 4 Division of Biomedical Informatics, Children's Hospital Research Foundation, Cincinnati, OH 45229, USA; Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267, USA.
  • 5 Division of Experimental Hematology and Cancer Biology, Children's Hospital Research Foundation, Cincinnati, OH 45229, USA. Electronic address: yi.zheng@cchmc.org.
Abstract

Ras GTPases regulate intracellular signaling involved in cell proliferation. Elevated Ras signaling activity has been associated with human cancers. Ras activation is catalyzed by guanine nucleotide exchange factors (GEFs), of which SOS1 is a major member that transduces receptor tyrosine kinase signaling to Ras. We have developed a rational approach coupling virtual screening with experimental screening in identifying small-molecule inhibitors targeting the catalytic site of SOS1 and SOS1-regulated Ras activity. A lead inhibitor, NSC-658497, was found to bind to SOS1, competitively suppress SOS1-Ras interaction, and dose-dependently inhibit SOS1 GEF activity. Mutagenesis and structure-activity relationship studies map the NSC-658497 site of action to the SOS1 catalytic site, and define the chemical moieties in the inhibitor essential for the activity. NSC-658497 showed dose-dependent efficacy in inhibiting Ras, downstream signaling activities, and associated cell proliferation. These studies establish a proof of principle for rational design of small-molecule inhibitors targeting Ras GEF enzymatic activity.

Figures
Products
  • Cat. No.
    Product Name
    Description
    Target
    Research Area
  • HY-19539
    SOS1 Inhibitor
    Ras