1. Academic Validation
  2. Synthesis of [(18) F] 4-amino-N-(3-chloro-4-fluorophenyl)-N'-hydroxy-1,2,5-oxadiazole-3-carboximidamide (IDO5L): a novel potential PET probe for imaging of IDO1 expression

Synthesis of [(18) F] 4-amino-N-(3-chloro-4-fluorophenyl)-N'-hydroxy-1,2,5-oxadiazole-3-carboximidamide (IDO5L): a novel potential PET probe for imaging of IDO1 expression

  • J Labelled Comp Radiopharm. 2015 Apr;58(4):156-62. doi: 10.1002/jlcr.3263.
Xuan Huang 1 Robert J Gillies Haibin Tian
Affiliations

Affiliation

  • 1 Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA.
Abstract

To synthesize (18) F-labeled positron emission tomography (PET) ligands, reliable labeling techniques inserting (18) F into a target molecule are necessary. The (18) F-fluorobenzene moiety has been widely utilized in the synthesis of (18) F-labeled compounds. The present study utilized [(18) F]-labeled aniline as intermediate in [(18) F]-radiolabeling chemistry for the facile radiosynthesis of 4-amino-N-(3-chloro-4-fluorophenyl)-N'-hydroxy-1,2,5-oxadiazole-3-carboximidamide ([(18) F]IDO5L) as indoleamine 2,3-dioxygenase 1 (IDO1) targeted tracer. IDO5L is a highly potent inhibitor of IDO1 with low nanomolar IC50 . [(18) F]IDO5L was synthesized via coupling [(18) F]3-chloro-4-fluoroaniline with carboximidamidoyl chloride as a potential PET probe for imaging IDO1 expression. Under the optimized labeling conditions, chemically and radiochemically pure (>98%) [(18) F]IDO5L was obtained with specific radioactivity ranging from 11 to 15 GBq/µmol at the end of synthesis within ~90 min, and the decay-corrected radiochemical yield was 18.2 ± 2.1% (n = 4).

Keywords

3-dioxygenase; IDO1; PET imaging; fluorine-18; indoleamine 2; radiolabeling.

Figures
Products