1. Academic Validation
  2. LOXL2 Oxidizes Methylated TAF10 and Controls TFIID-Dependent Genes during Neural Progenitor Differentiation

LOXL2 Oxidizes Methylated TAF10 and Controls TFIID-Dependent Genes during Neural Progenitor Differentiation

  • Mol Cell. 2015 Jun 4;58(5):755-66. doi: 10.1016/j.molcel.2015.04.012.
Ane Iturbide 1 Laura Pascual-Reguant 1 Laura Fargas 2 Joan Pau Cebrià 1 Berta Alsina 2 Antonio García de Herreros 3 Sandra Peiró 4
Affiliations

Affiliations

  • 1 Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain.
  • 2 Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003 Barcelona, Spain.
  • 3 Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain; Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003 Barcelona, Spain.
  • 4 Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain. Electronic address: speiro@imim.es.
Abstract

Protein function is often regulated and controlled by posttranslational modifications, such as oxidation. Although oxidation has been mainly considered to be uncontrolled and nonenzymatic, many enzymatic oxidations occur on enzyme-selected lysine residues; for instance, LOXL2 oxidizes lysines by converting the ε-amino groups into aldehyde groups. Using an unbiased proteomic approach, we have identified methylated TAF10, a member of the TFIID complex, as a LOXL2 substrate. LOXL2 oxidation of TAF10 induces its release from its promoters, leading to a block in TFIID-dependent gene transcription. In embryonic stem cells, this results in the inactivation of the pluripotency genes and loss of the pluripotent capacity. During zebrafish development, the absence of LOXL2 resulted in the aberrant overexpression of the neural progenitor gene Sox2 and impaired neural differentiation. Thus, lysine oxidation of the transcription factor TAF10 is a controlled protein modification and demonstrates a role for protein oxidation in regulating pluripotency genes.

Figures