1. Academic Validation
  2. Shanzhiside methylester, the principle effective iridoid glycoside from the analgesic herb Lamiophlomis rotata, reduces neuropathic pain by stimulating spinal microglial β-endorphin expression

Shanzhiside methylester, the principle effective iridoid glycoside from the analgesic herb Lamiophlomis rotata, reduces neuropathic pain by stimulating spinal microglial β-endorphin expression

  • Neuropharmacology. 2016 Feb;101:98-109. doi: 10.1016/j.neuropharm.2015.09.010.
Hui Fan 1 Teng-Fei Li 1 Nian Gong 1 Yong-Xiang Wang 2
Affiliations

Affiliations

  • 1 King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai, 200240, China.
  • 2 King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai, 200240, China. Electronic address: yxwang@sjtu.edu.cn.
Abstract

Lamiophlomis rotata (L. rotata, Duyiwei) is an orally available Tibetan analgesic herb widely prescribed in China. Shanzhiside methylester (SM) is a principle effective iridoid glycoside of L. rotata and serves as a small molecule glucagon-like peptide-1 (GLP-1) receptor agonist. This study aims to evaluate the signal mechanisms underlying SM anti-allodynia, determine the ability of SM to induce anti-allodynic tolerance, and illustrate the interactions between SM and morphine, or SM and β-endorphin, in anti-allodynia and anti-allodynic tolerance. Intrathecal SM exerted dose-dependent and long-lasting (>4 h) anti-allodynic effects in spinal nerve injury-induced neuropathic rats, with a maximal inhibition of 49% and a projected ED50 of 40.4 μg. SM and the peptidic GLP-1 Receptor agonist exenatide treatments over 7 days did not induce self-tolerance to anti-allodynia or cross-tolerance to morphine or β-endorphin. In contrast, morphine and β-endorphin induced self-tolerance and cross-tolerance to SM and exenatide. In the spinal dorsal horn and primary microglia, SM significantly evoked β-endorphin expression, which was completely prevented by the microglial inhibitor minocycline and p38 mitogen-activated protein kinase (MAPK) inhibitor SB203580. SM anti-allodynia was totally inhibited by the GLP-1 Receptor antagonist exendin(9-39), minocycline, β-endorphin antiserum, μ-opioid receptor antagonist CTAP, and SB203580. SM and exenatide specifically activated spinal p38 MAPK phosphorylation. These results indicate that SM reduces neuropathic pain by activating spinal GLP-1 receptors and subsequently stimulating microglial β-endorphin expression via the p38 MAPK signaling. Stimulation of the endogenous β-endorphin expression may be a novel and effective strategy for the discovery and development of analgesics for the long-term treatment of chronic pain.

Keywords

Anti-allodynia; Glucagon-like peptide-1 (GLP-1) receptor; Microglia; Shanzhiside methylester (SM); p38 mitogen-activated protein kinase (MAPK); β-endorphin.

Figures
Products