1. Academic Validation
  2. The small molecule '1-(4-biphenylylcarbonyl)-4-(5-bromo-2-methoxybenzyl) piperazine oxalate' and its derivatives regulate global protein synthesis by inactivating eukaryotic translation initiation factor 2-alpha

The small molecule '1-(4-biphenylylcarbonyl)-4-(5-bromo-2-methoxybenzyl) piperazine oxalate' and its derivatives regulate global protein synthesis by inactivating eukaryotic translation initiation factor 2-alpha

  • Cell Stress Chaperones. 2016 May;21(3):485-97. doi: 10.1007/s12192-016-0677-5.
Mi-Na Hong 1 Ky-Youb Nam 1 Kyung Kon Kim 1 2 So-Young Kim 1 InKi Kim 3 4
Affiliations

Affiliations

  • 1 Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, Convergence Medicine Research Building, 43 gil Olympicro, Pungnapdong, Songpagu, Seoul, 138-736, Republic of Korea.
  • 2 Department of Convergence Medicine, College of Medicine, University of Ulsan, Seoul, Republic of Korea.
  • 3 Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, Convergence Medicine Research Building, 43 gil Olympicro, Pungnapdong, Songpagu, Seoul, 138-736, Republic of Korea. ik.kim@amc.seoul.kr.
  • 4 Department of Convergence Medicine, College of Medicine, University of Ulsan, Seoul, Republic of Korea. ik.kim@amc.seoul.kr.
Abstract

By environmental stresses, cells can initiate a signaling pathway in which eukaryotic translation initiation factor 2-alpha (eIF2-α) is involved to regulate the response. Phosphorylation of eIF2-α results in the reduction of overall protein neogenesis, which allows cells to conserve resources and to reprogram energy usage for effective stress control. To investigate the role of eIF2-α in cell stress responses, we conducted a viability-based compound screen under endoplasmic reticulum (ER) stress condition, and identified 1-(4-biphenylylcarbonyl)-4-(5-bromo-2-methoxybenzyl) piperazine oxalate (AMC-01) and its derivatives as eIF2-α-inactivating chemical. Molecular characterization of this signaling pathway revealed that AMC-01 induced inactivation of eIF2-α by phosphorylating serine residue 51 in a dose- and time-dependent manner, while the negative control compounds did not affect eIF2-α phosphorylation. In contrast with ER stress induction by thapsigargin, phosphorylation of eIF2-α persisted for the duration of incubation with AMC-01. By pathway analysis, AMC-01 clearly induced the activation of protein kinase RNA-activated (PKR) kinase and nuclear factor-κB (NF-κB), whereas it did not modulate the activity of PERK or heme-regulated inhibitor (HRI). Finally, we could detect a lower protein translation rate in cells incubated with AMC-01, establishing AMC-01 as a potent chemical probe that can regulate eIF2-α activity. We suggest from these data that AMC-01 and its derivative compounds can be used as chemical probes in future studies of the role of eIF2-α in protein synthesis-related cell physiology.

Keywords

Cell stress response; Eukaryotic translation initiation factor 2-alpha; Molecular probe.

Figures
Products