1. Academic Validation
  2. Treatment of diabetic mice with the SGLT2 inhibitor TA-1887 antagonizes diabetic cachexia and decreases mortality

Treatment of diabetic mice with the SGLT2 inhibitor TA-1887 antagonizes diabetic cachexia and decreases mortality

  • NPJ Aging Mech Dis. 2017 Sep 8;3:12. doi: 10.1038/s41514-017-0012-0.
Taichi Sugizaki  # 1 2 3 Shunshun Zhu  # 1 Ge Guo 1 Akiko Matsumoto 1 Jiabin Zhao 1 Motoyoshi Endo 1 Haruki Horiguchi 1 Jun Morinaga 1 Zhe Tian 1 Tsuyoshi Kadomatsu 1 Keishi Miyata 1 2 Hiroshi Itoh 3 Yuichi Oike 1
Affiliations

Affiliations

  • 1 Department of Molecular Genetics, Graduate School of Medical Sciences, Institute of Resource Development and Analysis, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556 Japan.
  • 2 Department of Immunology, Allergy and Vascular Medicine, Graduate School of Medical Sciences, Institute of Resource Development and Analysis, Kumamoto University, 1-1-1 Honjo,Chuo-ku, Kumamoto, 860-8556 Japan.
  • 3 Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan.
  • # Contributed equally.
Abstract

A favorable effect of an inhibitor of the sodium-glucose cotransporter 2 (SGLT2i) on mortality of diabetic patients was recently reported, although mechanisms underlying that effect remained unclear. Here, we examine SGLT2i effects on survival of diabetic mice and assess factors underlying these outcomes. To examine SGLT2i treatment effects in a model of severe diabetes, we fed genetically diabetic db/db mice a high-fat diet and then assessed outcomes including diabetic complications between SGLT2i TA-1887-treated and control mice. We also compare effects of SGLT2i TA-1887 with those of lowering blood glucose levels via Insulin treatment. Untreated db/db mice showed remarkable weight loss, or cachexia, while TA-1887-treated mice did not but rather continued to gain weight at later time points and decreased mortality. TA-1887 treatment prevented pancreatic beta cell death, enhanced preservation of beta cell mass and endogenous Insulin secretion, and increased Insulin sensitivity. Moreover, TA-1887 treatment attenuated inflammation, oxidative stress, and cellular senescence, especially in visceral white adipose tissue, and antagonized endothelial dysfunction. Insulin treatment of db/db mice also prevented weight loss and antagonized inflammation and oxidative stress. However, Insulin treatment had less potent effects on survival and prevention of cellular senescence and endothelial dysfunction than did TA-1887 treatment. SGLT2i treatment prevents diabetic cachexia and death by preserving function of beta cells and Insulin target organs and attenuating complications. SGLT2i treatment may be a promising therapeutic strategy for type 2 diabetes patients with morbid obesity and severe Insulin resistance.

Figures
Products