1. Academic Validation
  2. Inhibition of A-Type K+ Channels by Urotensin-II Induces Sensory Neuronal Hyperexcitability Through the PKCα-ERK Pathway

Inhibition of A-Type K+ Channels by Urotensin-II Induces Sensory Neuronal Hyperexcitability Through the PKCα-ERK Pathway

  • Endocrinology. 2018 May 1;159(5):2253-2263. doi: 10.1210/en.2018-00108.
Yuan Zhang 1 2 Hua Wang 3 4 Jin Ke 4 Yuan Wei 4 Heyi Ji 4 Zhiyuan Qian 2 Li Liu 1 Jin Tao 4
Affiliations

Affiliations

  • 1 Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China.
  • 2 Department of Geriatrics & Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.
  • 3 Department of Endocrinology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.
  • 4 Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou, People's Republic of China.
Abstract

Previous studies have implicated urotensin-II in the nociception of sensory neurons. However, to date the relevant mechanisms remain unknown. In the current study we determined the role of urotensin-II in the regulation of transient outward A-type potassium currents (IA) and neuronal excitability in trigeminal ganglion (TG) neurons. We found that application of urotensin-II to small-diameter TG neurons decreased IA in a dose-dependent manner, whereas the delayed rectifier potassium current was unaffected. The IA decrease induced by urotensin-II depended on the urotensin-II receptor (UT-R) and was associated with a hyperpolarizing shift in the steady-state inactivation curve. Exposure of TG cells to urotensin-II markedly increased protein kinase C (PKC) activity, and PKC inhibition eliminated the UT-R-mediated IA decrease. Antagonism of PKCα, either pharmacologically or genetically, but not of PKCβ prevented the decrease in IA induced by urotensin-II. Analysis of phospho-extracellular signal-regulated kinase (p-ERK) revealed that urotensin-II significantly increased the expression level of p-ERK, whereas p-p38 and p-c-Jun N-terminal kinase remained unchanged. Inhibition of mitogen-activated protein kinase/ERK signaling by the kinase antagonist U0126 and PD98059 completely abolished the UT-R-mediated IA decrease. Moreover, urotensin-II significantly increased the action potential firing rate of small TG neurons; pretreatment with 4-aminopyridine prevented this effect. In summary, our findings suggest that urotensin-II selectively attenuated IA through stimulation of the PKCα-dependent ERK1/2 signaling pathway. This UT-R-dependent mechanism might contribute to neuronal hyperexcitability in TG neurons.

Figures
Products