1. Academic Validation
  2. The metabolite BH4 controls T cell proliferation in autoimmunity and cancer

The metabolite BH4 controls T cell proliferation in autoimmunity and cancer

  • Nature. 2018 Nov;563(7732):564-568. doi: 10.1038/s41586-018-0701-2.
Shane J F Cronin 1 2 3 Corey Seehus 2 3 Adelheid Weidinger 4 Sebastien Talbot 2 3 5 Sonja Reissig 6 Markus Seifert 7 Yann Pierson 8 Eileen McNeill 9 10 Maria Serena Longhi 11 Bruna Lenfers Turnes 12 Taras Kreslavsky 13 14 Melanie Kogler 1 David Hoffmann 1 Melita Ticevic 1 Débora da Luz Scheffer 12 Luigi Tortola 1 Domagoj Cikes 1 Alexander Jais 15 Manu Rangachari 16 17 Shuan Rao 1 Magdalena Paolino 14 Maria Novatchkova 13 Martin Aichinger 13 Lee Barrett 2 3 Alban Latremoliere 18 Gerald Wirnsberger 19 Guenther Lametschwandtner 19 Meinrad Busslinger 13 Stephen Zicha 20 Alexandra Latini 2 3 12 Simon C Robson 9 10 Ari Waisman 6 Nick Andrews 2 3 Michael Costigan 2 3 21 22 Keith M Channon 9 10 Guenter Weiss 7 Andrey V Kozlov 4 Mark Tebbe 17 Kai Johnsson 8 23 Clifford J Woolf 24 25 Josef M Penninger 26
Affiliations

Affiliations

  • 1 IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria.
  • 2 Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
  • 3 FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.
  • 4 Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Vienna, Austria.
  • 5 Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, Québec, Canada.
  • 6 Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.
  • 7 Department of Internal Medicine II (Infectious Diseases, Immunology, Rheumatology and Pneumology), Medical University of Innsbruck, Innsbruck, Austria.
  • 8 Institute of Chemical Sciences and Engineering, Institute of Bioengineering, National Centre of Competence in Research (NCCR) in Chemical Biology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
  • 9 Division of Cardiovascular Medicine, British Heart Foundation Centre for Research Excellence, John Radcliffe Hospital, University of Oxford, Oxford, UK.
  • 10 Wellcome Trust Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford, UK.
  • 11 Division of Gastroenterology and Liver Center, Department of Medicine, Beth Israel Deaconess Medical Center (BIDMC) and Harvard Medical School (HMS), Harvard University, Boston, MA, USA.
  • 12 LABOX, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, Brazil.
  • 13 Research Institute of Molecular Pathology, Vienna Biocenter, Campus-Vienna-Biocenter 1, Vienna, Austria.
  • 14 Karolinska Institute, Department of Medicine Solna, Center for Molecular Medicine, Karolinska University Hospital Solna, Stockholm, Sweden.
  • 15 Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany.
  • 16 Department of Neurosciences, Centre de Recherche de CHU de Québec-Université Laval, Québec, Québec, Canada.
  • 17 Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, Quebec, Canada.
  • 18 Neurosurgery Department, Johns Hopkins School of Medicine, Baltimore, MD, USA.
  • 19 Apeiron Biologics AG, Vienna, Austria.
  • 20 Quartet Medicine, 400 Technology Square, Cambridge, MA, USA.
  • 21 Department of Anesthesia, Harvard Medical School, Boston, MA, USA.
  • 22 Boston Children's Hospital, Boston, MA, USA.
  • 23 Department of Chemical Biology, Max-Planck Institute for Medical Research, Heidelberg, Germany.
  • 24 Department of Neurobiology, Harvard Medical School, Boston, MA, USA. clifford.woolf@childrens.harvard.edu.
  • 25 FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA. clifford.woolf@childrens.harvard.edu.
  • 26 IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria. josef.penninger@imba.oeaw.ac.at.
Abstract

Genetic regulators and environmental stimuli modulate T cell activation in autoimmunity and Cancer. The Enzyme co-factor tetrahydrobiopterin (BH4) is involved in the production of monoamine neurotransmitters, the generation of nitric oxide, and pain1,2. Here we uncover a link between these processes, identifying a fundamental role for BH4 in T Cell Biology. We find that genetic inactivation of GTP cyclohydrolase 1 (GCH1, the rate-limiting Enzyme in the synthesis of BH4) and inhibition of sepiapterin reductase (the terminal Enzyme in the synthetic pathway for BH4) severely impair the proliferation of mature mouse and human T cells. BH4 production in activated T cells is linked to alterations in iron metabolism and mitochondrial bioenergetics. In vivo blockade of BH4 synthesis abrogates T-cell-mediated autoimmunity and allergic inflammation, and enhancing BH4 levels through GCH1 overexpression augments responses by CD4- and CD8-expressing T cells, increasing their antitumour activity in vivo. Administration of BH4 to mice markedly reduces tumour growth and expands the population of intratumoral effector T cells. Kynurenine-a tryptophan metabolite that blocks antitumour immunity-inhibits T cell proliferation in a manner that can be rescued by BH4. Finally, we report the development of a potent SPR antagonist for possible clinical use. Our data uncover GCH1, SPR and their downstream metabolite BH4 as critical regulators of T Cell Biology that can be readily manipulated to either block autoimmunity or enhance Anticancer immunity.

Figures
Products