1. Academic Validation
  2. Dissociating nNOS (Neuronal NO Synthase)-CAPON (Carboxy-Terminal Postsynaptic Density-95/Discs Large/Zona Occludens-1 Ligand of nNOS) Interaction Promotes Functional Recovery After Stroke via Enhanced Structural Neuroplasticity

Dissociating nNOS (Neuronal NO Synthase)-CAPON (Carboxy-Terminal Postsynaptic Density-95/Discs Large/Zona Occludens-1 Ligand of nNOS) Interaction Promotes Functional Recovery After Stroke via Enhanced Structural Neuroplasticity

  • Stroke. 2019 Mar;50(3):728-737. doi: 10.1161/STROKEAHA.118.022647.
Huan-Yu Ni 1 2 Yi-Xuan Song 1 2 Yu-Hui Lin 1 2 Bo Cao 1 2 Dong-Liang Wang 1 2 Yu Zhang 1 2 Jian Dong 1 2 Hai-Ying Liang 1 2 Ke Xu 1 2 Ting-You Li 1 2 3 4 Lei Chang 1 2 Hai-Yin Wu 1 2 Chun-Xia Luo 1 2 4 Dong-Ya Zhu 1 2 4
Affiliations

Affiliations

  • 1 From the Institution of Stem Cells and Neuroregeneration (H.-Y.N., Y.-X.S., Y.-H.L., B.C., D.-L.W., Y.Z., J.D., H.-Y.L., K.X., T.-Y.L., L.C., H.-Y.W., C.-X.L., D.-Y.Z.), Nanjing Medical University, China.
  • 2 Department of Pharmacology, School of Pharmacy (H.-Y.N., Y.-X.S., Y.-H.L., B.C., D.-L.W., Y.Z., J.D., H.-Y.L., K.X., T.-Y.L., L.C., H.-Y.W., C.-X.L., D.-Y.Z.), Nanjing Medical University, China.
  • 3 Department of Medicinal Chemistry, School of Pharmacy (T.-Y.L.), Nanjing Medical University, China.
  • 4 Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing, China (T.-Y.L., C.-X.L., D.-Y.Z.).
Abstract

Background and Purpose- Stroke is a major public health concern worldwide. Although clinical treatments have improved in the acute period after stroke, long-term therapeutics remain limited to physical rehabilitation in the delayed phase. This study is aimed to determine whether nNOS (neuronal NO Synthase)-CAPON (carboxy-terminal postsynaptic density-95/discs large/zona occludens-1 ligand of nNOS) interaction may serve as a new therapeutic target in the delayed phase for stroke recovery. Methods- Photothrombotic stroke and transient middle cerebral artery occlusion were induced in mice. Adeno-associated virus (AAV)-cytomegalovirus (CMV)-CAPON-125C-GFP (green Fluorescent protein)-3Flag and the other 2 drugs (Tat-CAPON-12C and ZLc-002) were microinjected into the peri-infarct cortex immediately and 4 to 10 days after photothrombotic stroke, respectively. ZLc-002 was also systemically injected 4 to 10 days after transient middle cerebral artery occlusion. Grid-walking task and cylinder task were conducted to assess motor function. Western blotting, immunohistochemistry, Golgi staining, and electrophysiology recordings were performed to uncover the mechanisms. Results- Stroke increased nNOS-CAPON association in the peri-infarct cortex in the delayed period. Inhibiting the ischemia-induced nNOS-CAPON association substantially decreased the number of foot faults in the grid-walking task and forelimb asymmetry in the cylinder task, suggesting the promotion of functional recovery from stroke. Moreover, dissociating nNOS-CAPON significantly facilitated dendritic remodeling and synaptic transmission, indicated by increased dendritic spine density, dendritic branching, and length and miniature excitatory postsynaptic current frequency but did not affect stroke-elicited neuronal loss, infarct size, or cerebral edema, suggesting that nNOS-CAPON interaction may function via regulating structural neuroplasticity, rather than neuroprotection. Furthermore, ZLc-002 reversed the transient middle cerebral artery occlusion-induced impairment of motor function. Conclusions- Our results reveal that nNOS-CAPON coupling can serve as a novel pharmacological target for functional restoration after stroke.

Keywords

functional recovery; nNOS-CAPON; stroke; structural plasticity.

Figures
Products