1. Academic Validation
  2. Mosloflavone attenuates the quorum sensing controlled virulence phenotypes and biofilm formation in Pseudomonas aeruginosa PAO1: In vitro, in vivo and in silico approach

Mosloflavone attenuates the quorum sensing controlled virulence phenotypes and biofilm formation in Pseudomonas aeruginosa PAO1: In vitro, in vivo and in silico approach

  • Microb Pathog. 2019 Jun;131:128-134. doi: 10.1016/j.micpath.2019.04.005.
Sairengpuii Hnamte 1 Paramanantham Parasuraman 1 Sampathkumar Ranganathan 2 Dinakara Rao Ampasala 2 Dhanasekhar Reddy 3 Ranjith N Kumavath 3 Kitlangki Suchiang 4 Saswat Kumar Mohanty 4 Siddhardha Busi 5
Affiliations

Affiliations

  • 1 Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India.
  • 2 Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry, 605 014, India.
  • 3 Department of Genomic Sciences, School of Biological Sciences, Central University of Kerala, Kasaragod, India.
  • 4 Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India.
  • 5 Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India. Electronic address: siddhardha.busi@gmail.com.
Abstract

Quorum sensing (QS) is the cell density dependent communication network which coordinates the production of pathogenic determinants in majority of pathogenic bacteria. Pseudomonas aeruginosa causes hospital-acquired infections by virtue of its well-defined QS network. As the QS regulatory network in P. aeruginosa regulates the virulence determinants and Antibiotic resistance, attenuating the QS system seems to be influential in developing next-generation anti-infective agents. In the current study, the QS attenuation potential of a flavonoid, mosloflavone was investigated against P. aeruginosa virulence and biofilm formation. Mosloflavone inhibited the pyocyanin production, LasB Elastase and chitinase by 59.52 ± 2.74, 35.90 ± 4.34 and 61.18 ± 5.52% respectively. The QS regulated biofilm formation and development was also reduced when supplemented with sub-MIC of mosloflavone. The gene expression studies of mosloflavone using RT-PCR depicted its ability to down-regulate the expression levels of QS regulated virulence genes such as lasI (60.64%), lasR (91.70%), rhlI (57.30%), chiC (90.20%), rhlA (47.87%), rhlR (21.55%), lasB (37.80%), phzM (42.40%), toxA (61.00%), aprA (58.4%), exoS (78.01%), algD (46.60%) and pelA (50.45%). The down-regulation of QS virulence phenotypes by mosloflavone could be attributed to its binding affinity with the QS regulatory proteins, LasR and RhlR by competitively inhibiting the binding of natural autoinducers as evidenced from simulation studies. Mosloflavone also exhibited promising potential in controlling Bacterial infection in Caenorhabditis elegans model system, in vivo. The anti-biofilm and anti-QS potential of mosloflavone in the current study illustrated the candidature of mosloflavone as a promising biocide.

Keywords

Biofilm; Caenorhabditis elegans; Molecular dynamics simulation; Pseudomonas aeruginosa; Quorum sensing; RT-PCR.

Figures
Products