1. Academic Validation
  2. Structure of the Human ACP-ISD11 Heterodimer

Structure of the Human ACP-ISD11 Heterodimer

  • Biochemistry. 2019 Nov 19;58(46):4596-4609. doi: 10.1021/acs.biochem.9b00539.
María Georgina Herrera 1 Martín Ezequiel Noguera 1 2 Karl Ellioth Sewell 1 William Armando Agudelo Suárez 3 4 Luciana Capece 4 Sebastián Klinke 5 Javier Santos 1
Affiliations

Affiliations

  • 1 Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires, Instituto de Biociencias, Biotecnología y Biomedicina (iB3), Intendente Güiraldes 2160-Ciudad Universitaria , C1428EGA Buenos Aires , Argentina.
  • 2 Instituto de Química y Fisicoquímica Biológicas , Dr. Alejandro Paladini, Universidad de Buenos Aires, CONICET , Junín 956 , C1113AAD Buenos Aires , Argentina.
  • 3 Fundación Instituto de Inmunología de Colombia (FIDIC) , Av. 50 No. 26-20 , Bogotá D.C. , Colombia.
  • 4 Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE CONICET) , C1428EGA Buenos Aires , Argentina.
  • 5 Fundación Instituto Leloir , IIBBA-CONICET, and Plataforma Argentina de Biología Estructural y Metabolómica PLABEM , Av. Patricias Argentinas 435 , C1405BWE Buenos Aires , Argentina.
Abstract

In recent years, the mammalian mitochondrial protein complex for iron-sulfur cluster assembly has been the focus of important studies. This is partly because of its high degree of relevance in cell metabolism and because mutations of the involved proteins are the cause of several human diseases. Cysteine desulfurase NFS1 is the key Enzyme of the complex. At present, it is well-known that the active form of NFS1 is stabilized by the small protein ISD11. In this work, the structure of the human mitochondrial ACP-ISD11 heterodimer was determined at 2.0 Å resolution. ACP-ISD11 forms a cooperative unit stabilized by several ionic interactions, hydrogen bonds, and apolar interactions. The 4'-phosphopantetheine-acyl chain, which is covalently bound to ACP, interacts with several residues of ISD11, modulating together with ACP the foldability of ISD11. Recombinant human ACP-ISD11 was able to interact with the NFS1 desulfurase, thus yielding an active Enzyme, and the NFS1/ACP-ISD11 core complex was activated by frataxin and ISCU proteins. Internal motions of ACP-ISD11 were studied by molecular dynamics simulations, showing the persistence of the interactions between both protein chains. The conformation of the dimer is similar to that found in the context of the (NFS1/ACP-ISD11)2 supercomplex core, which contains the Escherichia coli ACP instead of the human variant. This fact suggests a sequential mechanism for supercomplex consolidation, in which the ACP-ISD11 complex may fold independently and, after that, the NFS1 dimer would be stabilized.

Figures