1. Academic Validation
  2. High content screening identifies licoisoflavone A as a bioactive compound of Tongmaiyangxin Pills to restrain cardiomyocyte hypertrophy via activating Sirt3

High content screening identifies licoisoflavone A as a bioactive compound of Tongmaiyangxin Pills to restrain cardiomyocyte hypertrophy via activating Sirt3

  • Phytomedicine. 2020 Mar;68:153171. doi: 10.1016/j.phymed.2020.153171.
Rui Guo 1 Ningning Liu 2 Hao Liu 1 Junhua Zhang 3 Han Zhang 3 Yingchao Wang 1 Mirko Baruscotti 4 Lu Zhao 1 Yi Wang 5
Affiliations

Affiliations

  • 1 Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
  • 2 Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; TCM Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
  • 3 TCM Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
  • 4 Department of Bioscienze, Pacelab, University of Milano, Milan, Italy.
  • 5 Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China. Electronic address: zjuwangyi@zju.edu.cn.
Abstract

Background: Cardiac hypertrophy is a prominent feature of heart remodeling, which may eventually lead to heart failure. Tongmaiyangxin (TMYX) pills are a clinically used botanical drug for treating multiple cardiovascular diseases including chronic heart failure. The aim of the current study was to identify the bioactive compounds in Tongmaiyangxin pills that attenuate cardiomyocytes hypertrophy, and to investigate the underlying mechanism of action.

Methods and results: The anti-hypertrophy effect of TMYX was validated in isoproterenol-induced cardiac hypertrophy model in C57BL/6 mice. After TMYX treatment for 2 weeks, the heart ejection fraction and fractional shortening of the mice model was increased by approximately 20% and 15%, respectively, (p < 0.05). Besides, TMYX dose-dependently reduced the cross section area of cardiomyocytes in the angiotensin-II induced hypertrophy H9c2 model (p < 0.01). Combining high content screening and liquid chromatography mass spectrometry, four compounds with anti-cardiac hypertrophy effects were identified from TMYX, which includes emodin, licoisoflavone A, licoricone and glyasperin A. Licoisoflavone A is one of the compounds with most significant protective effect and we continued to investigate the mechanism. Primary cultures of neonatal rat cardiomyocytes were treated with a hypertrophic agonist phenylephrine (PE) in the presence or absence of licoisoflavone A. After 48 h of treatment, cells were harvested and mitochondrial acetylation was analyzed by western blotting and Image analysis. Interestingly, the results suggested that the anti-hypertrophic effects of licoisoflavone A depend on the activation of the deacetylase SIRT3 (p < 0.01). Finally, we showed that licoisoflavone A-treatment was able to decrease relative ANF and BNP levels in the hypertrophic cardiac cells (p < 0.01), but not in cells co-treated with SIRT3 inhibitors (3-TYP) (p > 0.05).

Conclusion: TMYX exerts its anti-hypertrophy effect possibly through upregulating SIRT3 expression. Four compounds were identified from TMYX which may be responsible for the anti-hypertrophy effect. Among these compounds, licoisoflavone A was demonstrated to block the hypertrophic response of cardiomyocytes, which required its positive regulation on the expression of SIRT3. These results suggested that licoisoflavone A is a potential SIRT3 Activator with therapeutic effect on cardiac hypertrophy.

Keywords

High content screening; Hypertrophy; Sirt3; Tongmaiyangxin.

Figures
Products