1. Academic Validation
  2. Bi-allelic DNAH8 Variants Lead to Multiple Morphological Abnormalities of the Sperm Flagella and Primary Male Infertility

Bi-allelic DNAH8 Variants Lead to Multiple Morphological Abnormalities of the Sperm Flagella and Primary Male Infertility

  • Am J Hum Genet. 2020 Aug 6;107(2):330-341. doi: 10.1016/j.ajhg.2020.06.004.
Chunyu Liu 1 Haruhiko Miyata 2 Yang Gao 3 Yanwei Sha 4 Shuyan Tang 5 Zoulan Xu 6 Marjorie Whitfield 7 Catherine Patrat 8 Huan Wu 3 Emmanuel Dulioust 8 Shixiong Tian 5 Keisuke Shimada 2 Jiangshan Cong 5 Taichi Noda 2 Hang Li 3 Akane Morohoshi 9 Caroline Cazin 10 Zine-Eddine Kherraf 11 Christophe Arnoult 12 Li Jin 13 Xiaojin He 3 Pierre F Ray 11 Yunxia Cao 3 Aminata Touré 7 Feng Zhang 14 Masahito Ikawa 15
Affiliations

Affiliations

  • 1 Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai 200011, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China; State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211116, China.
  • 2 Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan.
  • 3 Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei 230032, China.
  • 4 Department of Andrology, United Diagnostic and Research Center for Clinical Genetics, School of Public Health & Women and Children's Hospital, Xiamen University, Xiamen 361005, Fujian, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China.
  • 5 Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai 200011, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China.
  • 6 Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan; Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan.
  • 7 INSERM U1016, Institut Cochin, Paris 75014, France; Centre National de la Recherche Scientifique UMR8104, Paris 75014, France; Faculté de Médecine, Université de Paris, Paris 75014, France.
  • 8 INSERM U1016, Institut Cochin, Paris 75014, France; Centre National de la Recherche Scientifique UMR8104, Paris 75014, France; Faculté de Médecine, Université de Paris, Paris 75014, France; Laboratoire d'Histologie Embryologie-Biologie de la Reproduction-CECOS Groupe Hospitalier Universitaire Paris Centre, Assistance Publique-Hôpitaux de Paris, Paris 75014, France.
  • 9 Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan; Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan.
  • 10 Team Genetics Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, Grenoble Alpes University (UGA), INSERM U1209, Centre National de la Recherche Scientifique UMR 5309, Grenoble 38000, France; UM de genetique de l'infertilite et de diagnostic pre-implantatoire (GI-DPI), Centre Hospitalier Universitaire Grenoble Alpes (CHUGA), Grenoble 38000, France; Service de Génétique, Laboratoire Eurofins Biomnis, Lyon, France.
  • 11 Team Genetics Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, Grenoble Alpes University (UGA), INSERM U1209, Centre National de la Recherche Scientifique UMR 5309, Grenoble 38000, France; UM de genetique de l'infertilite et de diagnostic pre-implantatoire (GI-DPI), Centre Hospitalier Universitaire Grenoble Alpes (CHUGA), Grenoble 38000, France.
  • 12 Team Genetics Epigenetics and Therapies of Infertility, Institute for Advanced Biosciences, Grenoble Alpes University (UGA), INSERM U1209, Centre National de la Recherche Scientifique UMR 5309, Grenoble 38000, France.
  • 13 Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai 200011, China.
  • 14 Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai 200011, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China; State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211116, China. Electronic address: zhangfeng@fudan.edu.cn.
  • 15 Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan; Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan; Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan; Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan. Electronic address: ikawa@biken.osaka-u.ac.jp.
Abstract

Sperm malformation is a direct factor for male infertility. Multiple morphological abnormalities of the flagella (MMAF), a severe form of asthenoteratozoospermia, are characterized by immotile spermatozoa with malformed and/or absent flagella in the ejaculate. Previous studies indicated genetic heterogeneity in MMAF. To further define genetic factors underlying MMAF, we performed whole-exome Sequencing in a cohort of 90 Chinese MMAF-affected men. Two cases (2.2%) were identified as carrying bi-allelic missense DNAH8 variants, variants which were either absent or rare in the control human population and were predicted to be deleterious by multiple bioinformatic tools. Re-analysis of exome data from a second cohort of 167 MMAF-affected men from France, Iran, and North Africa permitted the identification of an additional male carrying a DNAH8 homozygous frameshift variant. DNAH8 encodes a dynein axonemal heavy-chain component that is expressed preferentially in the testis. Hematoxylin-eosin staining and electron microscopy analyses of the spermatozoa from men harboring bi-allelic DNAH8 variants showed a highly aberrant morphology and ultrastructure of the sperm flagella. Immunofluorescence assays performed on the spermatozoa from men harboring bi-allelic DNAH8 variants revealed the absent or markedly reduced staining of DNAH8 and its associated protein DNAH17. Dnah8-knockout male mice also presented typical MMAF phenotypes and sterility. Interestingly, intracytoplasmic sperm injections using the spermatozoa from Dnah8-knockout male mice resulted in good pregnancy outcomes. Collectively, our experimental observations from humans and mice demonstrate that DNAH8 is essential for sperm flagellar formation and that bi-allelic deleterious DNAH8 variants lead to male infertility with MMAF.

Keywords

CRISPR; DNAH17; DNAH8; ICSI; dynein; exome; flagella; infertility; knockout; sperm.

Figures