1. Academic Validation
  2. GPR183-Oxysterol Axis in Spinal Cord Contributes to Neuropathic Pain

GPR183-Oxysterol Axis in Spinal Cord Contributes to Neuropathic Pain

  • J Pharmacol Exp Ther. 2020 Nov;375(2):367-375. doi: 10.1124/jpet.120.000105.
Kathryn Braden 1 Luigino Antonio Giancotti 1 Zhoumou Chen 1 Chelsea DeLeon 1 Nick Latzo 2 Terri Boehn Napoleon D'Cunha Bonne M Thompson Timothy M Doyle Jeffrey G McDonald John K Walker Grant R Kolar Christopher Kent Arnatt Daniela Salvemini
Affiliations

Affiliations

  • 1 INRAe, UMR 1280, Physiopathologie des Adaptations Nutritionnelles, CHU Hôtel-Dieu, Nantes, France (F.K.-C., M.T., K.O.) and Physiogenex SAS, Prologue Biotech, Rue Pierre et Marie Curie, Laboratoryège-Innopole, France (F.B., T.S.).
  • 2 INRAe, UMR 1280, Physiopathologie des Adaptations Nutritionnelles, CHU Hôtel-Dieu, Nantes, France (F.K.-C., M.T., K.O.) and Physiogenex SAS, Prologue Biotech, Rue Pierre et Marie Curie, Laboratoryège-Innopole, France (F.B., T.S.) khadija.ouguerram@univ-nantes.fr.
Abstract

Neuropathic pain is a debilitating public health concern for which novel non-narcotic therapeutic targets are desperately needed. Using unbiased transcriptomic screening of the dorsal horn spinal cord after nerve injury we have identified that Gpr183 (Epstein-Barr virus-induced gene 2) is upregulated after chronic constriction injury (CCI) in rats. GPR183 is a chemotactic receptor known for its role in the maturation of B cells, and the endogenous ligand is the oxysterol 7α,25-dihydroxycholesterol (7α,25-OHC). The role of GPR183 in the central nervous system is not well characterized, and its role in pain is unknown. The profile of commercially available probes for GPR183 limits their use as pharmacological tools to dissect the roles of this receptor in pathophysiological settings. Using in silico modeling, we have screened a library of 5 million compounds to identify several novel small-molecule antagonists of GPR183 with nanomolar potency. These compounds are able to antagonize 7α,25-OHC-induced calcium mobilization in vitro with IC50 values below 50 nM. In vivo intrathecal injections of these antagonists during peak pain after CCI surgery reversed allodynia in male and female mice. Acute intrathecal injection of the GPR183 ligand 7α,25-OHC in naïve mice induced dose-dependent allodynia. Importantly, this effect was blocked using our novel GPR183 antagonists, suggesting spinal GPR183 activation as pronociceptive. These studies are the first to reveal a role for GPR183 in neuropathic pain and identify this receptor as a potential target for therapeutic intervention. SIGNIFICANCE STATEMENT: We have identified several novel GPR183 antagonists with nanomolar potency. Using these antagonists, we have demonstrated that GPR183 signaling in the spinal cord is pronociceptive. These studies are the first to reveal a role for GPR183 in neuropathic pain and identify it as a potential target for therapeutic intervention.

Figures
Products