1. Academic Validation
  2. Feprazone Prevents Free Fatty Acid (FFA)-Induced Endothelial Inflammation by Mitigating the Activation of the TLR4/MyD88/NF-κB Pathway

Feprazone Prevents Free Fatty Acid (FFA)-Induced Endothelial Inflammation by Mitigating the Activation of the TLR4/MyD88/NF-κB Pathway

  • ACS Omega. 2021 Feb 9;6(7):4850-4856. doi: 10.1021/acsomega.0c05826.
Min Song 1 Liukun Meng 1 Xiaoxi Liu 1 Yan Yang 1
Affiliations

Affiliation

  • 1 Adult Cardiac Surgery Center, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases and Fuwai Hospital, CAMS and PUMC, Beijing 100037, China.
Abstract

Increased levels of free fatty acid (FFA)-induced endothelial dysfunction play an important role in the initiation and development of atherosclerosis. Feprazone is a nonsteroidal anti-inflammatory compound. However, the beneficial effects of feprazone on FFA-induced endothelial dysfunction have not been reported before. In the current study, we found that treatment with feprazone ameliorated FFA-induced cell death of human aortic endothelial cells (HAECs) by restoring cell viability and reducing the release of Lactate Dehydrogenase (LDH). Importantly, we found that treatment with feprazone ameliorated FFA-induced oxidative stress by reducing the production of mitochondrial Reactive Oxygen Species (ROS). In addition, feprazone prevented FFA-induced expression and secretion of proinflammatory cytokines and chemokines, such as chemokine ligand 5 (CCL5), interleukin-6 (IL-6), and interleukin-8 (IL-8). We also found that feprazone decreased the expression of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9). Interestingly, we found that feprazone reduced the expression of cell adhesion molecules, such as vascular cell adhesion molecule-1 (VCAM-1) and intercellular cell adhesion molecule-1 (ICAM-1). Our results also demonstrate that feprazone prevented FFA-induced activation of the Toll-like Receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88)/nuclear factor kappa-B (NF-κB) signaling pathway. These findings suggest that feprazone might serve as a potential agent for the treatment of atherosclerosis by improving the endothelial function.

Figures
Products