1. Academic Validation
  2. Reparative Effects of Ethanol-Induced Intestinal Barrier Injury by Flavonoid Luteolin via MAPK/NF-κB/MLCK and Nrf2 Signaling Pathways

Reparative Effects of Ethanol-Induced Intestinal Barrier Injury by Flavonoid Luteolin via MAPK/NF-κB/MLCK and Nrf2 Signaling Pathways

  • J Agric Food Chem. 2021 Apr 14;69(14):4101-4110. doi: 10.1021/acs.jafc.1c00199.
Jinwen Yuan 1 Siyan Che 1 Li Zhang 1 Zheng Ruan 1
Affiliations

Affiliation

  • 1 State Key Laboratory of Food Science and Technology, Nanchang Key Laboratory of Fruits and Vegetables Nutrition and Processing, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang 330047, China.
Abstract

Luteolin, a dietary flavonoid, has gained increasing interest as an intestinal protectant. This study aimed to evaluate the reparative effect of luteolin against ethanol-induced intestinal barrier damage in a Caco-2 cell monolayer model and the potential mechanisms. Luteolin attenuated ethanol-induced intestinal barrier injury, by increasing transepithelial monolayer resistance (TEER, 27.75 ± 14.75% of the ethanol group, p < 0.01), reducing Lucifer yellow flux (13.21 ± 1.23% of ethanol group, p < 0.01), and upregulating the expression of tight junction (TJ) proteins zonulin occludin-1 (ZO-1), occludin, and claudin-1 (37.963 ± 8.62%, 17.69 ± 7.35%, and 29.40 ± 8.08% of the ethanol group, respectively, p < 0.01). Further mechanistic studies showed that luteolin suppressed Myosin light chain 2 (MLC) phosphorylation, Myosin light chain kinase (MLCK) activation, nuclear factor kappa-B (NF-κB) nuclear translocation, and mitogen-activated-protein-kinase (MAPK) phosphorylation. Moreover, luteolin also acted as antioxidants indirectly by upregulating antioxidant-responsive-element (ARE) and nuclear factor (erythroid-derived 2)-like 2 (Nrf2) nuclear translocation to relieve ethanol-induced oxidative damage and TJ dysfunction. The results of the study indicate that luteolin may play an effective role in relieving intestinal barrier damage, and this effect is at least partially due to its indirect antioxidant capacity.

Keywords

ethanol; flavonoids; intestinal barrier; luteolin; oxidative stress.

Figures
Products