1. Academic Validation
  2. AKT serine/threonine kinase 2-mediated phosphorylation of fascin threonine 403 regulates esophageal cancer progression

AKT serine/threonine kinase 2-mediated phosphorylation of fascin threonine 403 regulates esophageal cancer progression

  • Int J Biochem Cell Biol. 2022 Apr;145:106188. doi: 10.1016/j.biocel.2022.106188.
Zhi-Da Zhang 1 Bing Wen 2 Da-Jia Li 3 Dan-Xia Deng 4 Xiao-Dong Wu 5 Yin-Wei Cheng 6 Lian-Di Liao 7 Lin Long 8 Geng Dong 9 Li-Yan Xu 10 En-Min Li 11
Affiliations

Affiliations

  • 1 The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, China. Electronic address: 19zdzhang@stu.edu.cn.
  • 2 The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, China. Electronic address: 16bwen@stu.edu.cn.
  • 3 The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, China. Electronic address: 18djli@stu.edu.cn.
  • 4 The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, China; Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, Guangdong, China. Electronic address: 19dxdeng@stu.edu.cn.
  • 5 The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, China; Institute of Basic Medical Science, Medical Bioinformatics Center, Shantou University Medical College, Shantou 515041, Guangdong, China. Electronic address: 18xdwu@stu.edu.cn.
  • 6 The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, China; Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, Guangdong, China; Institute of Basic Medical Science, Cancer Research Center, Shantou University Medical College, Shantou 515041, Guangdong, China. Electronic address: ywcheng@stu.edu.cn.
  • 7 The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, China; Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, Guangdong, China. Electronic address: ldliao@stu.edu.cn.
  • 8 The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, China; Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, Guangdong, China; Institute of Basic Medical Science, Cancer Research Center, Shantou University Medical College, Shantou 515041, Guangdong, China. Electronic address: llong@stu.edu.cn.
  • 9 The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, China; Institute of Basic Medical Science, Medical Bioinformatics Center, Shantou University Medical College, Shantou 515041, Guangdong, China. Electronic address: gdong@stu.edu.cn.
  • 10 The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, China; Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, Guangdong, China; Institute of Basic Medical Science, Cancer Research Center, Shantou University Medical College, Shantou 515041, Guangdong, China. Electronic address: lyxu@stu.edu.cn.
  • 11 The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, China. Electronic address: nmli@stu.edu.cn.
Abstract

Fascin is the main actin-bundling protein in filopodia and is highly expressed in metastatic tumor cells. The overexpression of Fascin has been associated with poor clinical prognosis and metastatic progression. Post-translational modifications of Fascin, such as phosphorylation, can affect the proliferation and invasion of tumor cells by regulating the actin-bundling activity of Fascin. However, the phosphorylation sites of Fascin and their corresponding kinases require further exploration. In the current study, we identified novel phosphorylation of Fascin Threonine 403 (Fascin-T403) mediated by Akt serine/threonine kinase 2 (Akt2), which was studied using mass spectrometry data from esophageal Cancer tissues (iProX database: IPX0002501000). A molecular dynamics simulation revealed that Fascin-Threonine 403 phosphorylation (Fascin-T403D) had a distinct spatial structure and correlation of amino acid residues, which was different from that of the wild type (Fascin-WT). Low-speed centrifugation assay results showed that Fascin-T403D affected actin cross-linking. To investigate whether Fascin-T403D affected the function of esophageal Cancer cells, either Fascin-WT or Fascin-T403D were rescued in Fascin-knockout or siRNA cell lines. We observed that Fascin-T403D could suppress the biological behavior of esophageal Cancer cells, including filopodia formation, cell proliferation, and migration. Co-immunoprecipitation (Co-IP) and Duolink in situ proximity ligation assay (PLA) were performed to measure the interaction between Fascin and Akt2. Using in vitro and in vivo kinase assays, we confirmed that Akt2, but not Akt1 or Akt3, is an upstream kinase of Fascin Threonine 403. Taken together, the AKT2-catalyzed phosphorylation of Fascin Threonine 403 suppressed esophageal Cancer cell behavior, actin-bundling activity, and filopodia formation.

Keywords

AKT serine/threonine kinase 2; Cell migration; Esophageal cancer; Fascin; Filopodia; Phosphorylation.

Figures
Products