1. Academic Validation
  2. Transient Receptor Potential Melastatin 8, a sensor of cold temperatures mediates expression of cyclin-dependent kinase inhibitor, p21/Cip1, a regulator of epidermal cell proliferation

Transient Receptor Potential Melastatin 8, a sensor of cold temperatures mediates expression of cyclin-dependent kinase inhibitor, p21/Cip1, a regulator of epidermal cell proliferation

  • J Toxicol Sci. 2022;47(3):117-123. doi: 10.2131/jts.47.117.
Tomofumi Fujino 1
Affiliations

Affiliation

  • 1 Department of Hygiene and Health Sciences, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences.
Abstract

Transient Receptor Potential Melastatin 8 (TRPM8) is a calcium-permeable, non-selective cation channel of the transient receptor potential superfamily, required for the transduction of moderate cold temperatures. TRPM8 is also known to regulate proliferation of prostate, pancreatic, breast, and melanoma carcinoma cells. Here, we examined a key factor in the regulation of TRPM8-mediated proliferation of epidermal cells, which are directly affected by cold temperatures. Experiments involving knockdown and ectopic expression of TRPM8 in normal keratinocyte HaCaT and squamous carcinoma SAS cells suggest that TRPM8 inhibits cell proliferation by upregulating the expression of cyclin-dependent inhibitor p21/Cip1. Whereas these findings were observed in the absence of an endogenous agonists, additions of the synthetic TRPM8 agonist icilin reduced DNA synthesis in HaCaT cells but stimulated that in SAS cells by altering p21/Cip1 levels in a TRPM8-independent manner, indicating that icilin poses a risk of stimulating carcinoma cell proliferation. Unexpectedly, the TRPM8 blocker, used for the treatment of overactive bladder and bladder pain, N-(3-aminopropyl)-2-{[(3-methylphenyl) methyl] oxy}-N-(2-thienylmethyl) benzamide hydrochloride salt (AMTB) reduced DNA synthesis by upregulating p21/Cip1 expression. However, another TRPM8 blocker, N-(4-Tertiarybutylphenyl)-4-(3-chloropyridin- 2-yl) tetrahydropyrazine-1 (2H)-carbox-amide (BCTC), stimulated DNA synthesis by downregulating p21/Cip1 expression, indicating that it may pose a risk of carcinogenesis associated with dysregulated cell cycles when used to treat overactive bladder and bladder pain.

Keywords

Carcinogenesis; TRPM8; p21/Cip1.

Figures
Products