1. Academic Validation
  2. NELFA and BCL2 induce the 2C-like state in mouse embryonic stem cells in a chemically defined medium

NELFA and BCL2 induce the 2C-like state in mouse embryonic stem cells in a chemically defined medium

  • Cell Prolif. 2023 Aug 17;e13534. doi: 10.1111/cpr.13534.
Baojiang Wu 1 2 Yanqiu Wang 1 2 Xinhua Wei 1 2 Jingcheng Zhang 3 Jiahui Wu 4 Guifang Cao 4 5 Yong Zhang 3 Jun Liu 3 Xihe Li 1 2 5 Siqin Bao 1 2
Affiliations

Affiliations

  • 1 The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China.
  • 2 Research Centre for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China.
  • 3 Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Northwest A&F University, Yangling, China.
  • 4 School of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China.
  • 5 Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, Hohhot, China.
Abstract

A minority of mouse embryonic stem cells (ESCs) display totipotent features resembling 2-cell stage embryos and are known as 2-cell-like (2C-like) cells. However, how ESCs transit into this 2C-like state remains largely unknown. Here, we report that the overexpression of negative elongation factor A (Nelfa), a maternally provided factor, enhances the conversion of ESCs into 2C-like cells in chemically defined conditions, while the deletion of endogenous Nelfa does not block this transition. We also demonstrate that Nelfa overexpression significantly enhances somatic cell reprogramming efficiency. Interestingly, we found that the co-overexpression of Nelfa and Bcl2 robustly activates the 2C-like state in ESCs and endows the cells with dual cell fate potential. We further demonstrate that Bcl2 overexpression upregulates endogenous Nelfa expression and can induce the 2C-like state in ESCs even in the absence of Nelfa. Our findings highlight the importance of BCL2 in the regulation of the 2C-like state and provide insights into the mechanism underlying the roles of Nelfa and Bcl2 in the establishment and regulation of the totipotent state in mouse ESCs.

Figures
Products