1. Academic Validation
  2. Discovery of Oxidized p-Terphenyls as Phosphodiesterase 4 Inhibitors from Marine-Derived Fungi

Discovery of Oxidized p-Terphenyls as Phosphodiesterase 4 Inhibitors from Marine-Derived Fungi

  • J Nat Prod. 2024 Jun 29. doi: 10.1021/acs.jnatprod.4c00422.
Jian Cai 1 2 Qian Zhou 3 4 Xin Qi 5 Furong Zhang 3 4 Jiafan Yang 1 2 Chunmei Chen 1 2 Kai Zhang 3 4 Zhexin Chen 3 4 Hai-Bin Luo 3 4 Yonghong Liu 1 Yi-You Huang 3 4 Xuefeng Zhou 1 2
Affiliations

Affiliations

  • 1 CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
  • 2 University of Chinese Academy of Sciences, Beijing 100049, China.
  • 3 Key Laboratory of Tropical Biological Resources of Ministry of Education and Hainan Engineering Research Center for Drug Screening and Evaluation, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China.
  • 4 Song Li' Academician Workstation of Hainan University (School of Pharmaceutical Sciences), Yazhou Bay, Sanya 572000, China.
  • 5 Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China.
Abstract

Four new p-terphenyl derivatives, talaroterphenyls A-D (1-4), together with three biosynthetically related known ones (5-7), were obtained from the mangrove sediment-derived Talaromyces sp. SCSIO 41412. Compounds 1-3 are rare p-terphenyls, which are completely substituted on the central benzene ring by oxygen atoms; this is the first report of their isolation from natural sources. Their structures were elucidated through NMR spectroscopy, HRESIMS, and X-ray diffraction. Genome sequence analysis revealed that 1-7 were biosynthesized from tyrosine and phenylalanine, involving four key biosynthetic genes (ttpB-ttpE). These p-terphenyls (1-7) and 36 marine-derived terphenyl analogues (8-43) were screened for phosphodiesterase 4 (PDE4) inhibitory activities, and 1-5, 14, 17, 23, and 26 showed notable activities with IC50 values of 0.40-16 μM. The binding pattern of p-terphenyl inhibitors 1-3 with PDE4 were explored by molecular docking analysis. Talaroterphenyl A (1), with a low cytotoxicity, showed obvious anti-inflammatory activity in LPS-stimulated RAW264.7 cells. Furthermore, in the TGF-β1-induced medical research council cell strain-5 (MRC-5) pulmonary fibrosis model, 1 could down-regulate the expression levels of FN1, COL1, and α-SMA significantly at concentrations of 5-20 μM. This study suggests that the oxidized p-terphenyl 1, as a marine-derived PDE4 Inhibitor, could be used as a promising antifibrotic agent.

Figures
Products