1. Academic Validation
  2. Functional Characterization of Ao4g24: An Uncharacterized Gene Involved in Conidiation, Trap Formation, Stress Response, and Secondary Metabolism in Arthrobotrys oligospora

Functional Characterization of Ao4g24: An Uncharacterized Gene Involved in Conidiation, Trap Formation, Stress Response, and Secondary Metabolism in Arthrobotrys oligospora

  • Microorganisms. 2024 Jul 26;12(8):1532. doi: 10.3390/microorganisms12081532.
Lirong Zhu 1 Meichen Zhu 1 Xuemei Li 1 Yanmei Shen 1 Shipeng Duan 1 Jinkui Yang 1
Affiliations

Affiliation

  • 1 State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, and School of Life Science, Yunnan University, Kunming 650032, China.
Abstract

Arthrobotrys oligospora is a typical nematode-trapping (NT) fungus, which can secrete food cues to lure, capture, and digest nematodes by triggering the production of adhesive networks (traps). Based on genomic and proteomic analyses, multiple pathogenic genes and proteins involved in trap formation have been characterized; however, there are numerous uncharacterized genes that play important roles in trap formation. The functional studies of these unknown genes are helpful in systematically elucidating the complex interactions between A. oligospora and nematode hosts. In this study, we screened the gene AOL_s00004g24 (Ao4g24). This gene is similar to the SWI/SNF chromatin remodeling complex, which was found to play a potential role in trap formation in our previous transcriptome analysis. Here, we characterized the function of Ao4g24 by gene disruption, phenotypic analysis, and metabolomics. The deletion of Ao4g24 led to a remarkable decrease in conidia yield, trap formation, and secondary metabolites. Meanwhile, the absence of Ao4g24 influenced the mitochondrial membrane potential, ATP content, Autophagy, ROS level, and stress response. These results indicate that Ao4g24 has crucial functions in sporulation, trap formation, and pathogenicity in NT fungi. Our study provides a reference for understanding the role of unidentified genes in mycelium growth and trap formation in NT fungi.

Keywords

cellular process; nematode-trapping ability; nematode-trapping fungus; sporulation; unknown gene.

Figures
Products