1. Academic Validation
  2. NVP-BHG712 alleviates ovariectomy-induced osteoporosis by modulating osteoclastogenesis

NVP-BHG712 alleviates ovariectomy-induced osteoporosis by modulating osteoclastogenesis

  • Eur J Pharmacol. 2024 Nov 15:983:177000. doi: 10.1016/j.ejphar.2024.177000.
Xin Liu 1 Shuang Liu 1 Huanxin Sun 1 Jing Zhang 1 Ming Li 1 Yuxuan Shi 1 Guolong Wang 1 Wendi Chen 1 Yongzhi Cao 1 Gang Lu 2 Yunna Ning 3 Yueran Zhao 4
Affiliations

Affiliations

  • 1 State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China.
  • 2 CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
  • 3 State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China. Electronic address: yunna_ning@163.com.
  • 4 State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China. Electronic address: yrzhao@sdu.edu.cn.
Abstract

Postmenopausal osteoporosis (PMOP) is closely related to the pathogenesis of osteoclasts, with the Cathepsin K (CTSK) protein playing a crucial role. Our study aimed to screen small molecule compounds targeting CTSK and evaluate their impact on PMOP. Through molecular docking, we identified NVP-BHG712 as significantly inhibiting osteoclast differentiation and bone resorption. NVP-BHG712 also effectively suppressed CTSK activity and exhibited strong binding affinity to CTSK protein. Furthermore, NVP-BHG712 regulated the expression of inflammatory factors and modulated the balance between M1 and M2 macrophage polarization. In the mouse model of ovariectomy-induced osteoporosis, NVP-BHG712 rescued bone loss by inhibiting excessive osteoclast activation. These findings suggest that NVP-BHG712 may be a promising treatment for pathological osteoporosis by alleviating osteoclast function.

Keywords

Cathepsin K; Inflammation; NVP-BHG712; Osteoclast differentiation; Osteoporosis.

Figures
Products