1. Academic Validation
  2. Proteomic Analysis of Microsomal Proteins Reveals That MVP Is Crucial for the Secretion of GDF-15, Which in Turn Promotes the Neuroendocrine Differentiation of PCa Cells

Proteomic Analysis of Microsomal Proteins Reveals That MVP Is Crucial for the Secretion of GDF-15, Which in Turn Promotes the Neuroendocrine Differentiation of PCa Cells

  • J Proteome Res. 2024 Oct 29. doi: 10.1021/acs.jproteome.4c00694.
Sandhya Venkata Lakshmi Pampana 1 2 Biswajit Biswas 1 2 Saikiran Jajula 3 Srikanth Rapole 3 Ramesh Ummanni 1 2
Affiliations

Affiliations

  • 1 Department of Applied Biology, Indian Institute of Chemical Technology (IICT), Hyderabad 500 007, India.
  • 2 Academy of Scientific & Innovative Research, Ghaziabad 201002, India.
  • 3 Proteomics Lab, National Centre for Cell Science, Ganeshkhind, Pune 411007, India.
Abstract

Neuroendocrine prostate Cancer (NEPC) is an aggressive androgen-independent PCa (AIPC) that tends to resist treatment. Understanding its progression and resistance could improve survival outcomes. Previous studies on PCa cells highlighted microsomal proteins' role in PCa progression, but their role in the progression of NEPC remains unclear. Thus, we investigated microsomal proteins in in vitro differentiated NE-LNCaP cells and their role in NED of PCa. Microsomal proteomics revealed two cancer-associated proteins GDF-15 and MVP as elevated in NE-LNCaP cells with GDF-15 among the top 5 upregulated proteins. MVP is elevated in NE-LNCaP and is also increased in NCI-H660 microsomes compared to LNCaP. GO and protein network analysis showed that different molecular networks are affected by microsomal protein enrichment, and MVP and GDF-15 are mapped to functional subnetworks associated with Cancer. Remarkably, GDF-15 and MVP are essential for LNCaP cell differentiation when stimulated with Forskolin. Interestingly, Akt and MAPK/ERK signaling pathways are significantly upregulated in NE-LNCaP and NCI-H660 cells with the direct involvement of GDF-15. In summary, we have uncovered that GDF-15 and MVP are involved in NED, with MVP being essential for GDF-15 secretion, promoting NED in PCa cells. These findings provide insights into NED mechanisms and suggest potential therapeutic targets or biomarkers for NEPC.

Keywords

LNCaP cells; forskolin; microsomes and proteomics; neuroendocrine prostate cancer.

Figures
Products