1. Academic Validation
  2. Novel Schiff Base Sulfonate Derivatives as Carbonic Anhydrase and Acetylcholinesterase Inhibitors: Synthesis, Biological Activity, and Molecular Docking Insights

Novel Schiff Base Sulfonate Derivatives as Carbonic Anhydrase and Acetylcholinesterase Inhibitors: Synthesis, Biological Activity, and Molecular Docking Insights

  • Chem Biodivers. 2024 Dec 9:e202402893. doi: 10.1002/cbdv.202402893.
Ümit Yaşar 1 Yeliz Demir 2 İlyas Gönül 3 Muhammet Serhat Özaslan 2 Gizem Gümüşgöz Çelik 4 Cüneyt Türkeş 5 Şükrü Beydemir 6
Affiliations

Affiliations

  • 1 Department of Laboratory and Veterinary Health, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Türkiye.
  • 2 Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Türkiye.
  • 3 Department of Chemistry and Chemical Process Technologies, Vocational School of Technical Sciences at Mersin, Tarsus Organized Industrial Zone, Tarsus University, Mersin, Türkiye.
  • 4 Department of Chemistry, Faculty of Science, Gebze Technical University, Gebze, Kocaeli, Türkiye.
  • 5 Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Türkiye.
  • 6 Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Türkiye.
Abstract

Sulfonate derivatives are an essential class of compounds with diverse pharmacological applications. This study presents the synthesis and detailed characterization of six novel Schiff base sulfonate derivatives (L1-L6) through spectroscopic techniques (FT-IR and NMR). Their inhibitory potential was evaluated against human Carbonic Anhydrase isoenzymes (hCA I and hCA II) and acetylcholinesterase (AChE), which are crucial therapeutic targets for diseases such as glaucoma, epilepsy, and Alzheimer's disease. The KI values for the compounds concerning AChE, hCA I, and hCA II Enzymes were in the ranges of 106.10 ± 14.73 to 422.80 ± 17.64 nM (THA: 159.61 ± 8.41 nM), 116.90 ± 24.40 to 268.00 ± 35.84 nM (AAZ: 439.17 ± 9.30 nM), and 177.00 ± 35.03 to 435.20 ± 75.98 nM (AAZ: 98.28 ± 1.69 nM), respectively. Molecular docking analyses revealed key interactions within the active sites of the Enzymes, including hydrogen bonding with critical residues and π-π stacking interactions. Notably, L3 demonstrated superior inhibition against hCA I (KI: 116.90 ± 24.40 nM) and AChE (KI: 106.10 ± 14.73 nM), positioning it as a promising lead compound. This comprehensive investigation contributes to the development of isoform-specific inhibitors for therapeutic use and provides valuable insights into their binding mechanisms. The findings underscore the potential of Schiff base sulfonates as scaffolds in drug discovery for neurodegenerative and metabolic disorders.

Keywords

Schiff bases; acetylcholinesterase; carbonic anhydrase; enzyme inhibition.

Figures
Products