1. Academic Validation
  2. Synthesis and antiviral activity of 5-[(cyanomethylene)oxy]-2'-deoxyuridine

Synthesis and antiviral activity of 5-[(cyanomethylene)oxy]-2'-deoxyuridine

  • J Med Chem. 1981 Apr;24(4):390-3. doi: 10.1021/jm00136a007.
G F Huang M Okada E De Clercq P F Torrence
Abstract

To study the influence of substitution of CN for C identical to CH in the anti-herpes virus nucleoside 5-(propynyloxy)-2'-deoxyuridine (1), 5-[(cyanomethylene)oxy]-2'-deoxyuridine (2) was prepared. When the potassium salt of 5-hydroxy-2'-deoxyuridine was reacted with iodoacetonitrile in dry DMF, the bisalkylated product 3-(cyanomethyl)-5-[(cyanomethylene)oxy]-2'-deoxyuridine (3) was the major product with a lesser amount of 3-(cyanomethyl)-5-hydroxy-2'-deoxyuridine (5) and only a trace amount of the desired product (2). In contrast, when 5-hydroxy-2'-deoxyuridine was alkylated in water in the presence of 1 equiv of KOH, compound 2 was the major product. In cultures of primary rabbit kidney (PRK) cells, compound 2 showed an anti-herpes virus activity that was comparable to that of 1 and ara-A. Compound 2 did not inhibit incorporation of [Me-3H]dThd or [1',2'-3H]dUrd into DNA of PRK cells; however, its anti-herpes virus activity was completely prevented upon the addition of either dThd or dUrd.

Figures