1. Academic Validation
  2. Estradiol reduces calcium currents in rat neostriatal neurons via a membrane receptor

Estradiol reduces calcium currents in rat neostriatal neurons via a membrane receptor

  • J Neurosci. 1996 Jan 15;16(2):595-604. doi: 10.1523/JNEUROSCI.16-02-00595.1996.
P G Mermelstein 1 J B Becker D J Surmeier
Affiliations

Affiliation

  • 1 Neuroscience Program, University of Michigan, Ann Arbor 48104, USA.
Abstract

Until recently, steroid Hormones were believed to act only on cells containing intracellular receptors. However, recent evidence suggests that Steroids have specific and rapid effects at the cellular membrane. Using whole-cell patch-clamp techniques, 17 beta-estradiol was found to reduce Ba2+ entry reversibly via Ca2+ channels in acutely dissociated and cultured neostriatal neurons. The effects were sex-specific, i.e., the reduction of Ba2+ currents was greater in neurons taken from female rats. 17 beta-Estradiol primarily targeted L-type currents, and their inhibition was detected reliably within seconds of administration. The maximum reduction by 17 beta-estradiol occurred at picomolar concentrations. 17 beta-Estradiol conjugated to bovine serum albumin also reduced Ba2+ currents, suggesting that the effect occurs at the membrane surface. Dialysis with GTP gamma S prevented reversal of the modulation, suggesting that 17 beta-estradiol acts via G-protein activation. 17 alpha-Estradiol also reduced Ba2+ currents but was significantly less effective than 17 beta-estradiol. Estriol and 4-hydroxyestradiol were found to reduce Ba2+ currents with similar efficacy to 17 beta-estradiol, whereas estrone and 2-methoxyestriol were less effective. Tamoxifen also reduced Ba2+ currents but did not occlude the effect of 17 beta-estradiol. These results suggest that at physiological concentrations, 17 beta-estradiol can have immediate actions on neostriatal neurons via nongenomic signaling pathways.

Figures