1. Academic Validation
  2. Synthesis, antimalarial activity, and molecular modeling of tebuquine analogues

Synthesis, antimalarial activity, and molecular modeling of tebuquine analogues

  • J Med Chem. 1997 Feb 14;40(4):437-48. doi: 10.1021/jm960370r.
P M O'Neill 1 D J Willock S R Hawley P G Bray R C Storr S A Ward B K Park
Affiliations

Affiliation

  • 1 Department of Chemistry, University of Liverpool, U.K.
Abstract

Tebuquine (5) is a 4-aminoquinoline that is significantly more active than amodiaquine (2) and chloroquine (1) both in vitro and in vivo. We have developed a novel more efficient synthetic route to tebuquine analogues which involves the use of a palladium-catalyzed Suzuki reaction to introduce the 4-chlorophenyl moiety into the 4-hydroxyaniline side chain. Using similar methodology, novel synthetic routes to fluorinated (7a, b) and a dehydroxylated (7c) analogue of tebuquine have also been developed. The novel analogues were subjected to testing against the chloroquine sensitive HB3 strain and the chloroquine resistant K1 strain of Plasmodium falciparum. Tebuquine was the most active compound tested against both strains of Plasmodia. Replacement of the 4-hydroxy function with either fluorine or hydrogen led to a decrease in antimalarial activity. Molecular modeling of the tebuquine analogues alongside amodiaquine and chloroquine reveals that the inter-nitrogen separation in this class of drugs ranges between 9.36 and 9.86 A in their isolated diprotonated form and between 7.52 and 10.21 A in the heme-drug complex. Further modeling studies on the interaction of 4-aminoquinolines with the proposed cellular receptor heme revealed favorable interaction energies for chloroquine, amodiaquine, and tebuquine analogues. Tebuquine, the most potent antimalarial in the series, had the most favorable interaction energy calculated in both the in vacuo and solvent-based simulation studies. Although fluorotebuquine (7a) had a similar interaction energy to tebuquine, this compound had significantly reduced potency when compared with (5). This disparity is possibly the result of the reduced cellular accumulation (CAR) of fluorotebuquine when compared with tebuquine within the Parasite. Measurement of the cellular accumulation of the tebuquine analogues and seven related 4-aminoquinolines shows a significant relationship (r = 0.98) between the CAR of 4-aminoquinoline drugs and the reciprocal of drugs IC50.

Figures
Products