1. Academic Validation
  2. Culture conditions affect meiotic regulation in cumulus cell-enclosed mouse oocytes

Culture conditions affect meiotic regulation in cumulus cell-enclosed mouse oocytes

  • Mol Reprod Dev. 1997 Apr;46(4):551-66. doi: 10.1002/(SICI)1098-2795(199704)46:43.0.CO;2-Z.
S M Downs 1 A M Mastropolo
Affiliations

Affiliation

  • 1 Biology Department, Marquette University, Milwaukee, WI 53233, USA.
Abstract

To test the hypothesis that culture conditions influence meiotic regulation in mouse oocytes, we have examined the effects of six culture media, four organic buffers, and pH on spontaneous maturation, the maintenance of meiotic arrest and ligand-induced maturation in cumulus cell-enclosed oocytes from hormonally primed immature mice. The media tested were Eagle's minimum essential medium (MEM), Ham's F-10 (F-10), M199, M16, Waymouth's MB 752/1 (MB 752/1), and Leibovitz's L-15 (L-15). All six media supported > or = 94% spontaneous germinal vesicle breakdown (GVB) during a 17-18 hr incubation period, but polar body formation was lower in M199 and MB 752/1 than in the Other media. The incidence of polar bodies could be increased in these two media by the addition of pyruvate. With the exception of M16 and MB 752/1, 4 mM hypoxanthine maintained a significant number of cumulus cell-enclosed oocytes in meiotic arrest. Inhibition could be restored by the addition of glutamine to M16 and pyruvate to MB 752/1. Follicle-stimulating hormone (FSH) and epidermal growth factor (EGF) stimulated GVB in those media in which hypoxanthine was inhibitory. dbcAMP was able to maintain meiotic arrest in all of the media, but was least effective in M16. FSH stimulated GVB in all dbcAMP-arrested groups except L-15, and FSH became stimulatory in L-15 when the pyruvate level was reduced to 0.23 mM and galactose was replaced with 5.5 mM glucose. When MEM was buffered principally with the organic buffers MOPS, HEPES, DIPSO, or PIPES (at 20 mM), high frequencies of GVB and polar body formation were observed in inhibitor-free medium. dbcAMP suppressed GVB in all groups; hypoxanthine also maintained meiotic arrest in all buffering conditions, although this effect was nominal in PIPES-buffered medium. FSH and EGF stimulated GVB in all dbcAMP- and hypoxanthine-treated groups. When the concentration of HEPES was increased from 20 mM to 25 mM, a more pronounced suppressive effect on maturation in both dbcAMP- and hypoxanthine-supplemented groups was observed in the absence of FSH. But whereas HEPES reduced the induction of maturation by FSH in dbcAMP-arrested oocytes, this buffer had no effect on FSH action in hypoxanthine-treated oocytes. When MEM was buffered with HEPES and the pH was adjusted to 6.8, 7.0, 7.2, or 7.4, a dramatic effect of pH on meiotic maturation was observed. pH had no significant effect on hypoxanthine salvage by oocyte-cumulus cell complexes, but FSH-induced de novo purine synthesis was significantly augmented by increased pH, in parallel with increased induction of GVB. The results of this study demonstrate that the use of different culture media, or minor changes in culture conditions, can lead to significant variation in (1) the spontaneous maturation of oocytes, (2) the ability of meiotic inhibitors to suppress GVB, or (3) the efficacy of meiosis-inducing ligands. Furthermore, such observations provide a unique opportunity to examine specific molecules and metabolic pathways that can account for this variation and thereby gain valuable insights into the mechanisms involved in meiotic regulation.

Figures
Products