1. Academic Validation
  2. Melatonin receptor pharmacology: toward subtype specificity

Melatonin receptor pharmacology: toward subtype specificity

  • Biol Cell. 1997 Nov;89(8):531-7. doi: 10.1016/s0248-4900(98)80009-9.
D Sugden 1 H Pickering M T Teh P J Garratt
Affiliations

Affiliation

  • 1 Physiology Group, King's College London, UK.
Abstract

The recent cloning of three distinct Melatonin Receptor subtypes (Mel1a, Mel1b and Mel1c) which are part of a new family of G-protein coupled receptors, and probably mediate the physiological actions of the hormone, has spurred interest in the design of analogues with subtype selectivity. The 5-methoxyl and N-acetyl groups of melatonin are important for binding to and activation of the receptor. The indole nucleus serves to hold these two groups at the correct distance from one another and allows them to adopt the required orientation for interaction with the receptor binding pocket. We have investigated the subtype selectivity of a number of analogues of melatonin in which the structure has systematically been modified in order to probe the similarities and differences in the interaction of ligand and receptor subtype. At all three subtypes 5-methoxyl and N-acetyl groups of melatonin are important for high affinity binding. However, replacing the 5-methoxyl group (eg with 5-H, 5-OH, 5-Me or 5-BzO) reduces affinity much less at the Mel1b receptor subtype than at either Mel1a or Mel1c cloned subtypes. This suggests differences between the Mel1b and Mel1a/1c subtypes in the size and shape of the binding pocket or in the manner in which melatonin interacts with the receptor at this position. Further studies have revealed that analogues with longer N-acyl carbon chains behave similarly at each subtype. These observations suggest that the 'pocket' into which the N-acetyl group fits is very similar for each subtype. Substitutions at the 2-position on the indole ring improved affinity at each receptor subtype but did not give selective analogues. The systematic 'mapping' of the requirements for binding at each receptor subtype should allow the design of more selective agonists and antagonists, which will be valuable tools for the characterization and classification of functional melatonin receptors.

Figures
Products