1. Academic Validation
  2. The kinetics of hydrolysis of some extended N-aminoacyl-l-lysine methyl esters

The kinetics of hydrolysis of some extended N-aminoacyl-l-lysine methyl esters

  • Eur J Biochem. 1976 Sep;68(1):131-7. doi: 10.1111/j.1432-1033.1976.tb10771.x.
G D Green G Tomalin
Abstract

1. The action of two active forms of bovine trypsin (alpha and beta-trypsin) on a series of specific methyl ester substrates of general formula: N-acetyl-(glycyl)n-L-lysine methyl ester (n = 0, 1, 2) and N2-benzoyl-L-arginine ethyl ester have been investigated. With the L-lysine methyl esters the catalytic rate constant for hydrolysis (kcat) was found to be significantly lower for alpha-trypsin than for beta-trypsin, whereas with N2-benzoyl-L-arginine ethyl ester there was no significant difference for the two Enzymes. 2. By measurement of the kinetic constants (kcat and Km) in the presence of a nucleophile, which competes with water in the deacylation process, it has been shown that, in common with the specific ester substrates of trypsin, the rate-determining step for the extended L-lysine methyl esters is decaylation of the Enzyme. 3. It has been found that by extending the aminoacyl group of N-acetyl-L-lysine methyl ester by one glycine residue (n = 1), a greatly enhanced deacylation rate constant is observed for both alpha and beta-trypsin. The higher rate constants were maintained at the higher levels by the addition of a further glycine residue (n = 2). These results have been interpreted in terms of the 'induced fit' hypothesis the substrates binding to an Enzyme subsite adjacent to the active site. 4. The beta-trypsin-catalysed hydrolysis of the L-lysine substrates was investigated over a range of temperature (15--35 degrees C). The Arrhenius law was obeyed, within experimental error, by all three substrates allowing the estimation of the thermodynamic function of activation (delta S not equal to and deltaH note equal to) for the deacylation reactions. The significantly higher values of deltaS not equal to and deltaH not equal to obtained for the two extended substrates are interpreted in terms of additional hydrogen bonding between the longer aminoacyl chains and the Enzyme molecule. The results are compared with those for non-extended specific substrates, which have a possible hydrophobic interaction with the Enzyme surface.

Figures
Products