1. Academic Validation
  2. CypHer 5: a generic approach for measuring the activation and trafficking of G protein-coupled receptors in live cells

CypHer 5: a generic approach for measuring the activation and trafficking of G protein-coupled receptors in live cells

  • Assay Drug Dev Technol. 2003 Apr;1(2):251-9. doi: 10.1089/15406580360545062.
Elaine J Adie 1 Michael J Francis June Davies Lynne Smith Angela Marenghi Catherine Hather Karen Hadingham N Paul Michael Graeme Milligan Stephen Game
Affiliations

Affiliation

  • 1 Bioassays, Development, Amersham Biosciences, Whitchurch, Cardiff, United Kingdom. Elaine.Adie@uk.amershambiosciences.com
Abstract

GPCRs are one of the most popular classes of therapeutic drug targets. It is therefore important to design specific assay formats to readily identify ligands at these receptors. CypHer 5 technology utilizes the general ability of GPCRs to be internalized into the endosomal pathway of a cell in response to agonist ligands. The CypHer 5 dye is fluorescent in acidic environments, but nonfluorescent at neutral pH. When CypHer 5 is bound to a receptor on the extracellular surface of the cell, it is essentially nonfluorescent. On internalization into a cell, it displays a significant increase in fluorescence. Here we demonstrate the detection of agonist activation of two GPCRs in stably transfected live cells using CypHer 5 technology. The G(q)-coupled TRHR-1 and the G(s)-coupled beta(2)-adrenoceptor were both N-terminally tagged with VSV-G. Following addition of CypHer 5-labeled anti-VSV-G Antibodies to HEK 293 cells stably expressing the beta(2)-adrenoceptor or CHO-K1 cells stably expressing the TRHR-1, the cells were treated with agonists and then imaged on Amersham Biosciences' IN Cell Analyzer 3000. Data were quantified using a granularity analysis module. Concentration-response curves were obtained with signal-to-background ratios of 7:1 for both receptors. An EC(50) of 0.52 nM was observed on TRH stimulation of the TRHR-1, and an EC(50) of 30 nM was obtained on isoprenaline stimulation of the beta(2)-adrenoceptor. These results demonstrated that the CypHer technology was capable of measuring high-potency agonist responses. The beta(2)-adrenoceptor antagonist, alprenolol, competed for isoprenaline with an IC(50) of 30 nM, indicating that a high-potency antagonist inhibition curve could also be observed using CypHer. CypHer 5 provides a generic tool to measure GPCR activation in a live cell, homogeneous assay format, and may be equally suitable for detecting activation of Other classes of cell surface receptors.

Figures
Products