1. Academic Validation
  2. The exon junction core complex is locked onto RNA by inhibition of eIF4AIII ATPase activity

The exon junction core complex is locked onto RNA by inhibition of eIF4AIII ATPase activity

  • Nat Struct Mol Biol. 2005 Oct;12(10):861-9. doi: 10.1038/nsmb990.
Lionel Ballut 1 Brice Marchadier Aurélie Baguet Catherine Tomasetto Bertrand Séraphin Hervé Le Hir
Affiliations

Affiliation

  • 1 Equipe Labélisée La Ligue, Centre de Génétique Moléculaire, associé à l'Université Paris 6, CNRS UPR2167, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France.
Abstract

The multiprotein exon junction complex (EJC) is assembled on mRNAs as a consequence of splicing. EJC core components maintain a stable grip on mRNAs even as the overall EJC protein composition evolves while mRNAs travel to the cytoplasm. Here we show that recombinant EJC subunits MLN51, MAGOH and Y14, together with the DEAD-box protein eIF4AIII bound to ATP, are necessary and sufficient to form a highly stable complex on single-stranded RNA. Cross-linking and RNase protection studies indicate that this recombinant complex recapitulates the EJC core. The stable association of the recombinant EJC core with RNA is maintained by inhibition of eIF4AIII ATPase activity by MAGOH-Y14. We elucidate the modalities of EJC binding to RNA and provide the first example of how cellular machineries may use RNA helicases to clamp several proteins onto RNA in stable and sequence-independent manners.

Figures