1. Academic Validation
  2. Discovery of 4-{4-[3-(pyridin-2-yl)-1H-pyrazol-4-yl]pyridin-2-yl}-N-(tetrahydro-2H- pyran-4-yl)benzamide (GW788388): a potent, selective, and orally active transforming growth factor-beta type I receptor inhibitor

Discovery of 4-{4-[3-(pyridin-2-yl)-1H-pyrazol-4-yl]pyridin-2-yl}-N-(tetrahydro-2H- pyran-4-yl)benzamide (GW788388): a potent, selective, and orally active transforming growth factor-beta type I receptor inhibitor

  • J Med Chem. 2006 Apr 6;49(7):2210-21. doi: 10.1021/jm0509905.
Françoise Gellibert 1 Anne-Charlotte de Gouville James Woolven Neil Mathews Van-Loc Nguyen Cécile Bertho-Ruault Angela Patikis Eugene T Grygielko Nicholas J Laping Stéphane Huet
Affiliations

Affiliation

  • 1 Department of Medicinal Chemistry and Biology, GlaxoSmithKline, 25-27 Avenue du Québec, 91951 Les Ulis, France. francoise.gellibert@gsk.com
Abstract

Inhibitors of transforming growth factor beta (TGF-beta) type I receptor (ALK5) offer a novel approach for the treatment of fibrotic diseases such as renal, hepatic, and pulmonary fibrosis. The optimization of a novel phenylpyridine pyrazole series (1a) led to the identification of potent, selective, and orally active ALK5 inhibitors. The cellular potency and pharmacokinetics profiles of these derivatives were improved and several compounds presented antifibrotic activity when orally administered to rats in an acute liver model of dimethylnitrosamine- (DMN-) induced expression of collagen IA1 mRNA, a major gene contributing to excessive extra cellular matrix deposit. One of the most potent ALK5 inhibitors identified in this chemical series, compound 13d (GW788388), reduced the expression of collagen IA1 by 80% at a dose of 1 mg/kg twice a day (b.i.d.). This compound significantly reduced the expression of collagen IA1 mRNA when administered orally at 10 mg/kg once a day (u.i.d.) in a model of puromycin aminonucleoside-induced renal fibrosis.

Figures
Products