1. Academic Validation
  2. Retinoic acid induces neurogenesis by activating both retinoic acid receptors (RARs) and peroxisome proliferator-activated receptor β/δ (PPARβ/δ)

Retinoic acid induces neurogenesis by activating both retinoic acid receptors (RARs) and peroxisome proliferator-activated receptor β/δ (PPARβ/δ)

  • J Biol Chem. 2012 Dec 7;287(50):42195-205. doi: 10.1074/jbc.M112.410381.
Shuiliang Yu 1 Liraz Levi Ruth Siegel Noa Noy
Affiliations

Affiliation

  • 1 Department of Pharmacology, Western Reserve University School of Medicine,Cleveland, Ohio 44106, USA.
Abstract

Retinoic acid (RA) regulates gene transcription by activating the nuclear receptors retinoic acid receptor (RAR) and Peroxisome Proliferator-activated Receptor (PPAR) β/δ and their respective cognate lipid-binding proteins CRABP-II and FABP5. RA induces neuronal differentiation, but the contributions of the two transcriptional pathways of the hormone to the process are unknown. Here, we show that the RA-induced commitment of P19 stem cells to neuronal progenitors is mediated by the CRABP-II/RAR path and that the FABP5/PPARβ/δ path can inhibit the process through induction of the RAR repressors SIRT1 and Ajuba. In contrast with its inhibitory activity in the early steps of neurogenesis, the FABP5/PPARβ/δ path promotes differentiation of neuronal progenitors to mature neurons, an activity mediated in part by the PPARβ/δ target gene PDK1. Hence, RA-induced neuronal differentiation is mediated through RAR in the early stages and through PPARβ/δ in the late stages of the process. The switch in RA signaling is accomplished by a transient up-regulation of RARβ concomitantly with a transient increase in the CRABP-II/FABP5 ratio at early stages of differentiation. In accordance with these conclusions, hippocampi of FABP5-null mice display excess accumulation of neuronal progenitor cells and a deficit in mature neurons versus wild-type Animals.

Figures
Products