1. Academic Validation
  2. Dioscin restores the activity of the anticancer agent adriamycin in multidrug-resistant human leukemia K562/adriamycin cells by down-regulating MDR1 via a mechanism involving NF-κB signaling inhibition

Dioscin restores the activity of the anticancer agent adriamycin in multidrug-resistant human leukemia K562/adriamycin cells by down-regulating MDR1 via a mechanism involving NF-κB signaling inhibition

  • J Nat Prod. 2013 May 24;76(5):909-14. doi: 10.1021/np400071c.
Lijuan Wang 1 Qiang Meng Changyuan Wang Qi Liu Jinyong Peng Xiaokui Huo Huijun Sun Xiaochi Ma Kexin Liu
Affiliations

Affiliation

  • 1 Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, People's Republic of China.
Abstract

The purpose of this study was to investigate the ameliorating effect of dioscin (1) on multidrug resistance (MDR) in adriamycin (ADR)-resistant erythroleukemic cells (K562/adriamycin, K562/ADR) and to clarify the molecular mechanisms involved. High levels of multidrug resistance 1 (MDR1) mRNA and protein and reduced ADR retention were found in K562/ADR cells compared with parental cells (K562). Dioscin (1), a constituent of Plants in the genus Discorea, significantly inhibited MDR1 mRNA and protein expression and MDR1 promoter and nuclear factor κ-B (NF-κB) activity in K562/ADR cells. MDR1 mRNA and protein suppression resulted in the subsequent recovery of intracellular drug accumulation. Additionally, inhibitor κB-α (IκB-α) degradation was inhibited by 1. Dioscin (1) reversed ADR-induced MDR by down-regulating MDR1 expression by a mechanism that involves the inhibition of the NF-κB signaling pathway. These findings provide evidence to support the further investigation of the clinical application of dioscin (1) as a chemotherapy Adjuvant.

Figures