1. Academic Validation
  2. Sappanone A exhibits anti-inflammatory effects via modulation of Nrf2 and NF-κB

Sappanone A exhibits anti-inflammatory effects via modulation of Nrf2 and NF-κB

  • Int Immunopharmacol. 2015 Sep;28(1):328-36. doi: 10.1016/j.intimp.2015.06.015.
Suhyun Lee 1 Sol-Yip Choi 1 Young-Yeon Choo 1 Okwha Kim 1 Phuong Thao Tran 1 Cuong To Dao 2 Byung-Sun Min 2 Jeong-Hyung Lee 3
Affiliations

Affiliations

  • 1 Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-Do 200-701, Republic of Korea.
  • 2 College of Pharmacy, Catholic University of Daegu, Gyeongsan 712-702, Republic of Korea.
  • 3 Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-Do 200-701, Republic of Korea. Electronic address: jhlee36@kangwon.ac.kr.
Abstract

Homoisoflavonoids constitute a small class of Natural Products. In the present study, we investigated the anti-inflammatory effect of sappanone A (SPNA), a homoisoflavanone that is isolated from the heartwood of Caesalpinia sappan (Leguminosae), in murine macrophages. SPNA inhibited the production of nitric oxide (NO), prostaglandin E2 (PGE2) and interleukin-6 (IL-6) as well as the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and IL-6 in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Moreover, SPNA protected C57BL/6 mice from LPS-induced mortality. Treatment of RAW264.7 cells with SPNA induced heme oxygenase (HO)-1 protein and mRNA expression and increased nuclear translocation of the nuclear factor-E2-related factor 2 (Nrf2) as well as the expression of Nrf2 target genes such as

Nad(p)h: quinone oxidoreductase 1 (NQO1). Knockdown of Nrf2 by siRNA blocked SPNA-mediated HO-1 induction. SB203580, p38 mitogen-activated protein kinase (MAPK) inhibitor, blocked SPNA-induced HO-1 expression and nuclear translocation of Nrf2, suggesting that SPNA induces HO-1 expression by activating Nrf2 through the p38 MAPK pathway. Consistent with the notion that the Nrf2/HO-1 pathway has anti-inflammatory properties, inhibiting HO-1 significantly abrogated the anti-inflammatory effects of SPNA in LPS-stimulated RAW264.7 cells. Moreover, SPNA suppressed LPS-induced nuclear factor κB (NF-κB) activation via inhibiting Ser 536 phosphorylation and transcriptional activity of RelA/p65 subunit of NF-κB. Taken together, these findings suggest that SPNA exerts its anti-inflammatory effect by modulating the Nrf2 and NF-κB pathways, and may be a valuable compound to prevent or treat inflammatory diseases.

Keywords

Anti-inflammation; Heme oxygenase-1; Homoisoflavonoids; NF-κB; Nrf2; Sappanone A.

Figures
Products