1. Academic Validation
  2. A Chinese Medicine Formula "Xian-Jia-Tang" for Treating Bladder Outlet Obstruction by Improving Urodynamics and Inhibiting Oxidative Stress through Potassium Channels

A Chinese Medicine Formula "Xian-Jia-Tang" for Treating Bladder Outlet Obstruction by Improving Urodynamics and Inhibiting Oxidative Stress through Potassium Channels

  • Evid Based Complement Alternat Med. 2017;2017:8147258. doi: 10.1155/2017/8147258.
Jie Sun 1 Wei Shen 1 Wenjin An 1 Qiufen Li 2 Shunan Qiu 1 Shaobo Jiang 1
Affiliations

Affiliations

  • 1 Department of Urology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou City 310006, China.
  • 2 Department of Nephrology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou City 310006, China.
Abstract

The aim of this study is to investigate efficacy of a traditional Chinese medicine formula (named Xian-Jia-Tang, XJT) on bladder outlet obstruction (BOO) in rats and explore its mechanisms. Total 80 BOO model rats were established and randomly divided into 4 groups: physiological saline, XJT, Cesium Chloride (CC), and XJT and CC groups. Meanwhile, 12 rats were used as normal control. Bladder weight and urodynamics were measured. Oxidative stress level and mRNA expressions of potassium channels gene were detected in detrusor. The mRNA and protein levels of hypoxia inducible factor-α (HIF-α) in detrusor were detected by RT-PCR and Western blot. BOO model rats showed significantly higher bladder weight and abnormal urodynamics. XJT significantly improved the abnormal urodynamics and inhibited the oxidative stress and changes of mRNA levels of potassium channels genes in detrusor of BOO model rats. Moreover, KATP and SK2/3 mRNA were overexpressed in BOO model rats treated by XJT. Besides, the significantly increased levels of HIF-α mRNA and protein were also inhibited by XJT. However, these inhibition effects of XJT were weakened by CC. XJT could effectively improve the urodynamics and inhibit the oxidative stress caused by hypoxia through suppressing the role of potassium channels in BOO model rats.

Figures
Products