1. Academic Validation
  2. Reactivation of hyperglycemia-induced hypocretin (HCRT) gene silencing by N-acetyl-d-mannosamine in the orexin neurons derived from human iPS cells

Reactivation of hyperglycemia-induced hypocretin (HCRT) gene silencing by N-acetyl-d-mannosamine in the orexin neurons derived from human iPS cells

  • Epigenetics. 2017 Sep;12(9):764-778. doi: 10.1080/15592294.2017.1346775.
Koji Hayakawa 1 Yasuharu Sakamoto 2 Osamu Kanie 3 4 Atsuko Ohtake 3 Shusaku Daikoku 3 Yukishige Ito 2 3 Kunio Shiota 1 5
Affiliations

Affiliations

  • 1 a Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences/Veterinary Medical Sciences , The University of Tokyo , Tokyo , Japan.
  • 2 b Synthetic Cellular Chemistry Laboratory , RIKEN , 2-1 Hirosawa, Wako , Saitama , Japan.
  • 3 c Japan Science and Technology Agency ERATO Glycotrilogy Project , 2-1 Hirosawa, Wako , Saitama , Japan.
  • 4 d Present address: Institute of Advanced Biosciences, Tokai University , 4-1-1 Kitakaname, Hiratsuka , Kanagawa , Japan.
  • 5 e Waseda Research Institute for Science and Engineering, Waseda University , Tokyo , Japan.
Abstract

Orexin neurons regulate critical brain activities for controlling sleep, eating, emotions, and metabolism, and impaired orexin neuron function results in several neurologic disorders. Therefore, restoring normal orexin function and understanding the mechanisms of loss or impairment of orexin neurons represent important goals. As a step toward that end, we generated human orexin neurons from induced pluripotent stem cells (hiPSCs) by treatment with N-acetyl-d-mannosamine (ManNAc) and its derivatives. The generation of orexin neurons was associated with DNA hypomethylation, histone H3/H4 hyperacetylation, and hypo-O-GlcNAcylation on the HCRT gene locus, and, thereby, the treatment of inhibitors of SIRT1 and OGT were effective at inducing orexin neurons from hiPSCs. The prolonged exposure of orexin neurons to high glucose in culture caused irreversible silencing of the HCRT gene, which was characterized by H3/H4 hypoacetylation and hyper-O-GlcNAcylation. The DNA hypomethylation status, once established in orexin neurogenesis, was maintained in the HCRT-silenced orexin neurons, indicating that histone modifications, but not DNA methylation, were responsible for the HCRT silencing. Thus, the epigenetic status of the HCRT gene is unique to the hyperglycemia-induced silencing. Intriguingly, treatment of ManNAc and its derivatives reactivated HCRT gene expression, while inhibitors SIRT1 and the OGT did not. The present study revealed that the HCRT gene was silenced by the hyperglycemia condition, and ManNAc and its derivatives were useful for restoring the orexin neurons.

Keywords

Histone acetylation; O-GlcNAcylation; hyperglycemia; neurodegeneration; orexin.

Figures
Products