1. Academic Validation
  2. Annexin A2 (ANX A2): An emerging biomarker and potential therapeutic target for aggressive cancers

Annexin A2 (ANX A2): An emerging biomarker and potential therapeutic target for aggressive cancers

  • Int J Cancer. 2019 May 1;144(9):2074-2081. doi: 10.1002/ijc.31817.
Mahesh C Sharma 1 2
Affiliations

Affiliations

  • 1 Research Service, Veterans Affairs Medical Center, Washington, DC.
  • 2 Department of Biochemistry and Molecular Medicine, George Washington University, Washington, DC.
Abstract

ANX A2 is an important member of annexin family of proteins expressed on surface of endothelial cells (ECs), macrophages, mononuclear cells and various types of Cancer cells. It exhibits high affinity binding for calcium (CA++ ) and Phospholipids. ANX A2 plays an important role in many biological processes such as endocytosis, exocytosis, Autophagy, cell-cell communications and biochemical activation of plasminogen. On the cell surface ANX A2 organizes the assembly of plasminogen (PLG) and tissue plasminogen activator (tPA) for efficient conversion of PLG to plasmin, a serine protease. Proteolytic activity of plasmin is required for activation of inactive pro-metalloproteases (pro-MMPs) and latent growth factors for their biological actions. These activation steps are critical for degradation of extracellular matrix (ECM) and basement proteins (BM) for Cancer cell invasion and metastasis. Increased expression of ANX A2 protein/gene has been correlated with invasion and metastasis in a variety of human cancers. Moreover, clinical studies have positively correlated ANX A2 protein expression with aggressive cancers and with resistance to Anticancer drugs, shorter disease-free survival (DFS), and worse overall survival (OS). The mechanism(s) by which ANX A2 regulates Cancer invasion and metastasis are beginning to emerge. Investigators used various technologies to target ANX A2 in preclinical model of human cancers and demonstrated exciting results. In this review article, we analyzed existing literature concurrent with our own findings and provided a critical overview of ANX A2-dependent mechanism(s) of Cancer invasion and metastasis.

Keywords

ANX A2; ECM; cancer; metastasis; neoangiogenesis.

Figures
Products