1. Academic Validation
  2. The Protective Effect of Hispidin against Hydrogen Peroxide-Induced Oxidative Stress in ARPE-19 Cells via Nrf2 Signaling Pathway

The Protective Effect of Hispidin against Hydrogen Peroxide-Induced Oxidative Stress in ARPE-19 Cells via Nrf2 Signaling Pathway

  • Biomolecules. 2019 Aug 19;9(8):380. doi: 10.3390/biom9080380.
Sung-Ying Huang 1 Shu-Fang Chang 2 Siu-Fung Chau 3 Sheng-Chun Chiu 4 5 6
Affiliations

Affiliations

  • 1 Department of Ophthalmology, Hsinchu Mackay Memorial Hospital, Hsinchu 30071, Taiwan.
  • 2 Department of Research, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 42743, Taiwan.
  • 3 Department of Ophthalmology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 42743, Taiwan. Cipechau@gmail.com.
  • 4 Department of Research, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 42743, Taiwan. Honeyhopes@gmail.com.
  • 5 Department of Laboratory Medicine, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 42743, Taiwan. Honeyhopes@gmail.com.
  • 6 General Education Center, Tzu Chi University of Science and Technology, Hualien 97005, Taiwan. Honeyhopes@gmail.com.
Abstract

Hispidin, a polyphenol compound isolated from Phellinuslinteus, has been reported to possess antioxidant activities. In this study, we aimed to investigate the mechanisms underlying the protective effect of hispidin against hydrogen peroxide (H2O2)-induced oxidative stress on Adult Retinal Pigment Epithelial cell line-19 (ARPE-19) cells. Hispidin was not cytotoxic to ARPE-19 cells at concentrations of less than 50 μM. The levels of intracellular Reactive Oxygen Species (ROS) were analyzed by dichlorofluorescin diacetate (DCFDA) staining. Hispidin significantly restored H2O2-induced cell death and reduced the levels of intracellular ROS. The expression levels of antioxidant Enzymes, such as NAD(P)H:Quinine oxidoreductase-1 (NQO-1), heme oxygenase-1 (HO-1), glutamate-cysteine Ligase catalytic subunit (GCLC), and glutamate-cysteine Ligase modifier subunit (GCLM) were examined using Real-Time PCR and Western blotting. Our results showed that hispidin markedly enhanced the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), HO-1, NQO-1, GCLM, and GCLC in a dose-dependent manner. Furthermore, knockdown experiments revealed that transfection with Nrf2 siRNA successfully suppresses the hispidin activated Nrf2 signaling in ARPE-19 cells. Moreover, activation of the c-Jun N-terminal kinase (JNK) pathway is involved in mediating the protective effects of hispidin on the ARPE-19 cells. Thus, the present study demonstrated that hispidin provides protection against H2O2-induced damage in ARPE-19 cells via activation of Nrf2 signaling and up-regulation of its downstream targets, including Phase II Enzymes, which might be associated with the activation of the JNK pathway.

Keywords

ARPE-19; Nrf2; age-related macular degeneration; hispidin; hydrogen peroxide; oxidative stress.

Figures