1. Academic Validation
  2. Annexin-1 Mimetic Peptide Ac2-26 Suppresses Inflammatory Mediators in LPS-Induced Astrocytes and Ameliorates Pain Hypersensitivity in a Rat Model of Inflammatory Pain

Annexin-1 Mimetic Peptide Ac2-26 Suppresses Inflammatory Mediators in LPS-Induced Astrocytes and Ameliorates Pain Hypersensitivity in a Rat Model of Inflammatory Pain

  • Cell Mol Neurobiol. 2020 May;40(4):569-585. doi: 10.1007/s10571-019-00755-8.
Zhenzhao Luo 1 Hui Wang 1 Shiqiang Fang 1 Li Li 2 Xing Li 3 Jing Shi 3 Man Zhu 1 Zheqiong Tan 1 Zhongxin Lu 4
Affiliations

Affiliations

  • 1 Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26 Shengli St., Jiangan District, Wuhan, 430014, China.
  • 2 Department of Pathology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26 Shengli St., Jiangan District, Wuhan, 430014, China.
  • 3 Department of Neurobiology, The School of Basic Medical Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
  • 4 Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26 Shengli St., Jiangan District, Wuhan, 430014, China. lzx71@yahoo.com.
Abstract

Ac2-26, a mimetic peptide of Annexin-A1, plays a vital role in the anti-inflammatory response mediated by astrocytes. In this study, we aimed to explore the underlying mechanisms of Ac2-26-mediated anti-inflammatory effect. Specifically, we investigated the inhibitory effects of Ac2-26 on lipopolysaccharide (LPS)-induced astrocyte migration and on pro-inflammatory cytokines and chemokines expressions, as well as one glutathione (GSH) reductase mRNA and total intracellular GSH levels in LPS-induced astrocytes. Additionally, we investigated whether mitogen-activated protein kinases (MAPK) and nuclear factor kappa-B (NF-κB) signaling pathway were involved in this process. Finally, we evaluated the analgesic effect of Ac2-26 in complete Freund's Adjuvant (CFA)-induced inflammatory pain model. Our results demonstrated that Ac2-26 inhibited LPS-induced astrocytes migration, reduced the production of pro-inflammatory mediators [tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-1 (MIP-1α)] and upregulated GSH reductase mRNA and GSH levels in LPS-induced astrocytes in vitro. This process was mediated through the p38, JNK-MAPK signaling pathway, but not dependent on the NF-κB pathway. Furthermore, the p38 and JNK inhibitors mimicked the effects of Ac2-26, whereas a p38 and JNK Activator anisomycin partially reversed its function. Finally, Ac2-26 treatment reduced CFA-induced activation of astrocytes and production of inflammatory mediators in the spinal cord. These results suggest that Ac2-26 attenuates pain by inhibiting astrocyte activation and the production of inflammatory mediators; thus, this work presents Ac2-26 as a potential drug to treat neuropathic pain.

Keywords

Ac2-26; Annexin-1; GSH; Inflammatory mediators; MAPK pathway; Migration.

Figures
Products