1. Academic Validation
  2. Excellent effects and possible mechanisms of action of a new antibody-drug conjugate against EGFR-positive triple-negative breast cancer

Excellent effects and possible mechanisms of action of a new antibody-drug conjugate against EGFR-positive triple-negative breast cancer

  • Mil Med Res. 2021 Dec 9;8(1):63. doi: 10.1186/s40779-021-00358-9.
Dan-Dan Zhou  # 1 Wei-Qi Bai  # 2 Xiao-Tian Zhai 1 Li-Ping Sun 1 Yong-Su Zhen 1 Zhuo-Rong Li 3 Qing-Fang Miao 4
Affiliations

Affiliations

  • 1 NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Tiantan Xili, Beijing, 100050, China.
  • 2 Department of Organic Chemistry, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Tiantan Xili, Beijing, 100050, China.
  • 3 Department of Organic Chemistry, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Tiantan Xili, Beijing, 100050, China. lizhuorong@imb.pumc.edu.cn.
  • 4 NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Tiantan Xili, Beijing, 100050, China. miaoqf@imb.pumc.edu.cn.
  • # Contributed equally.
Abstract

Background: Triple-negative breast Cancer (TNBC) is the most aggressive subtype and occurs in approximately 15-20% of diagnosed breast cancers. TNBC is characterized by its highly metastatic and recurrent features, as well as a lack of specific targets and targeted therapeutics. Epidermal growth factor receptor (EGFR) is highly expressed in a variety of tumors, especially in TNBC. LR004-VC-MMAE is a new EGFR-targeting antibody-drug conjugate produced by our laboratory. This study aimed to evaluate its antitumor activities against EGFR-positive TNBC and further studied its possible mechanism of antitumor action.

Methods: LR004-VC-MMAE was prepared by coupling a cytotoxic payload (MMAE) to an anti-EGFR antibody (LR004) via a linker, and the drug-to-antibody ratio (DAR) was analyzed by HIC-HPLC. The gene expression of EGFR in a series of breast Cancer cell lines was assessed using a publicly available microarray dataset (GSE41313) and Western blotting. MDA-MB-468 and MDA-MB-231 cells were treated with LR004-VC-MMAE (0, 0.0066, 0.066, 0.66, 6.6 nmol/L), and the inhibitory effects of LR004-VC-MMAE on cell proliferation were examined by CCK-8 and colony formation. The migration and invasion capacity of MDA-MB-468 and MDA-MB-231 cells were tested at different LR004-VC-MMAE concentrations (2.5 and 5 nmol/L) with wound healing and Transwell invasion assays. Flow cytometric analysis and tumorsphere-forming assays were used to detect the killing effects of LR004-VC-MMAE on Cancer Stem Cells in MDA-MB-468 and MDA-MB-231 cells. The mouse xenograft models were also used to evaluate the antitumor efficacy of LR004-VC-MMAE in vivo. Briefly, BALB/c nude mice were subcutaneously inoculated with MDA-MB-468 or MDA-MB-231 cells. Then they were randomly divided into 4 groups (n = 6 per group) and treated with PBS, naked LR004 (10 mg/kg), LR004-VC-MMAE (10 mg/kg), or doxorubicin, respectively. Tumor sizes and the body weights of mice were measured every 4 days. The effects of LR004-VC-MMAE on Apoptosis and cell cycle distribution were analyzed by flow cytometry. Western blotting was used to detect the effects of LR004-VC-MMAE on EGFR, ERK, MEK phosphorylation and tumor stemness marker gene expression.

Results: LR004-VC-MMAE with a DAR of 4.02 were obtained. The expression of EGFR was found to be significantly higher in TNBC cells compared with non-TNBC cells (P < 0.01). LR004-VC-MMAE inhibited the proliferation of EGFR-positive TNBC cells, and the IC50 values of MDA-MB-468 and MDA-MB-231 cells treated with LR004-VC-MMAE for 72 h were (0.13 ± 0.02) nmol/L and (0.66 ± 0.06) nmol/L, respectively, which were significantly lower than that of cells treated with MMAE [(3.20 ± 0.60) nmol/L, P < 0.01, and (6.60 ± 0.50) nmol/L, P < 0.001]. LR004-VC-MMAE effectively inhibited migration and invasion of MDA-MB-468 and MDA-MB-231 cells. Moreover, LR004-VC-MMAE also killed tumor stem cells in EGFR-positive TNBC cells and impaired their tumorsphere-forming ability. In TNBC xenograft models, LR004-VC-MMAE at 10 mg/kg significantly suppressed tumor growth and achieved complete tumor regression on day 36. Surprisingly, tumor recurrence was not observed until the end of the experiment on day 52. In a mechanistic study, we found that LR004-VC-MMAE significantly induced cell Apoptosis and cell cycle arrest at G2/M phase in MDA-MB-468 [(34 ± 5)% vs. (12 ± 2)%, P < 0.001] and MDA-MB-231 [(27 ± 4)% vs. (18 ± 3)%, P < 0.01] cells. LR004-VC-MMAE also inhibited the activation of EGFR signaling and the expression of Cancer stemness marker genes such as Oct4, Sox2, KLF4 and EpCAM.

Conclusions: LR004-VC-MMAE showed effective antitumor activity by inhibiting the activation of EGFR signaling and the expression of Cancer stemness marker genes. It might be a promising therapeutic candidate and provides a potential therapeutic avenue for the treatment of EGFR-positive TNBC.

Keywords

Antibody–drug conjugate; Antitumor effect; Epidermal growth factor receptor; Targeted therapy; Triple-negative breast cancer.

Figures
Products