1. Academic Validation
  2. Anti-Neuroinflammatory Effects of a Semi-Synthetic Isoorientin-Based Glycogen Synthase Kinase-3β Inhibitor in Lipopolysaccharide-Activated Microglial Cells

Anti-Neuroinflammatory Effects of a Semi-Synthetic Isoorientin-Based Glycogen Synthase Kinase-3β Inhibitor in Lipopolysaccharide-Activated Microglial Cells

  • ACS Chem Neurosci. 2022 Jan 5;13(1):43-52. doi: 10.1021/acschemneuro.1c00537.
Meng Xu 1 Megan J Lantz 2 Robert A Nichols 2 Qing X Li 1
Affiliations

Affiliations

  • 1 Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East-West Road, Honolulu, Hawaii 96822, United States.
  • 2 Department of Cell & Molecular Biology, John A. Burn School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii 96813, United States.
Abstract

Neuroinflammation contributes to the pathogenesis of several neurodegenerative disorders. Glycogen synthase kinase-3β (GSK-3β) regulates the release of proinflammatory cytokines and promotes inflammatory responses in immune cells. Microglia are the resident mononuclear immune cells of the central nervous system. Here, we investigated the anti-neuroinflammatory effects of (2S,3S,4R,5R,6S)-6-(2-(3,4-dimethoxyphenyl)-5,7-dimethoxy-4-oxo-4H-chromen-6-yl)-3,4,5-trihydroxy-N-((S)-1,1,1-trifluoropropan-2-yl)tetrahydro-2H-pyran-2-carboxamide (TFGF-18), a semisynthetic GSK-3β Inhibitor, in lipopolysaccharide (LPS) activation of spontaneously immortalized SIM-A9 microglial cells and of mouse cortical microglia. TFGF-18 at 2.5 μM concentration inhibited LPS-induced production of nitric oxide by 56.3% and the proinflammatory cytokines TNF-α and IL-1β by 28.3 and 59.2% in SIM-A9 cells, respectively, relative to the LPS treatment control group. Pretreatment of mouse primary microglial cells with TFGF-18 at 2.5 μM concentration led to a reduction of 58.7% in TNF-α+ microglial cells at 24 h post-LPS stimulation. The migration of LPS-activated SIM-A9 cells was also reduced by 26.7% with pretreatment of TFGF-18 in a scratch assay. Analyses of signaling pathways demonstrated that TFGF-18 led to the suppression of LPS-induced GSK-3β activation and p65/NF-κB activity. Furthermore, the co-culture of SIM-A9 with SH-SY5Y neuroblastoma cells showed the suppression of TFGF-18 to microglia-mediated neurotoxicity in vitro. The findings indicate strong inhibitory effects of TFGF-18 on LPS-induced microglia activation via regulation of GSK-3β and downstream p65/NF-κB signaling. The results suggest a potential role of TFGF-18 in neuroprotection via its anti-neuroinflammatory effect.

Keywords

GSK-3β; TFGF-18; lipopolysaccharide; microglia; neuroinflammation.

Figures
Products